Y_2O_3 掺杂 ZrSiO₄ 涂层的微观组织和相结构研究

王 鑫^{1,2},薛召露^{1,2,3},刘 侠^{1,2,3},邓海亮²,张世宏^{1,2} (1. 安徽工业大学 现代表界面工程研究中心,安徽 马鞍山 243002)

(2. 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室, 安徽 马鞍山 243002)

(3. 安徽马钢表面技术股份有限责任公司, 安徽 马鞍山 243000)

摘 要:采用大气等离子喷涂成功制备了 ZrSiO₄及 Y₂O₃掺杂 ZrSiO₄涂层,研究了 Y₂O₃掺杂后 ZrSiO₄涂层微观组织结构、力学性能,并研究了涂层在 1300 ℃下的烧结行为。结果表明,等离子喷涂 ZrSiO₄涂层主要由 ZrSiO₄、t-ZrO₂、少量的 m-ZrO₂及无定型 SiO₂组成,而等离子喷涂 ZrSiO₄-5%Y₂O₃涂层主要由 c-ZrO₂、少量 ZrSiO₄ 相及无定型 SiO₂组成。相较于 ZrSiO₄涂层,Y₂O₃掺杂略微提高了 ZrSiO₄-5%Y₂O₃涂层的硬度和断裂韧性。在 1300 ℃高温烧结 48 h 后等离子喷涂 ZrSiO₄涂层中(t,m)-ZrO₂和无定型 SiO₂反应重新生成 ZrSiO₄相,该反应伴随着体积收缩,使得涂层中存在着大量的孔隙和裂纹。相较于纯 ZrSiO₄涂层,ZrSiO₄-5%Y₂O₃涂层中主要是 c-ZrO₂相和 ZrSiO₄相,添加 Y₂O₃有助于涂层中的 ZrO₂保持在立方相(c-ZrO₂),提高了 ZrO₂的高温相稳定性。

关键词:大气等离子喷涂;Y₂O₃掺杂 ZrSiO₄涂层;微观组织;力学性能;高温烧结行为
中图法分类号:TG174.442⁺.1
文献标识码:A
文章编号:1002-185X(2022)09-3427-08

随着航空发动机向高推重比和高热效率方向发展,其 涡轮前进口温度不断提升。高的涡轮前进口温度使得发 动机热端部件(涡轮叶片、燃烧室等)面临着更加严苛 的服役环境。传统的镍基高温合金已达承温极限,C_f/SiC 复合材料由于其优异的高温力学性能(高比强度、高模 量)、良好的耐磨性能以及高温稳定性,被认为是最有 潜力的高温结构材料之一^[1-3]。然而,C_f/SiC 复合材料的 抗氧化性较差,在含氧环境中 673 K 以上会迅速氧 化,限制其进一步的应用^[4,5]。抗氧化涂层是提高C_f/SiC 复合材料高温抗氧化性能最有效的手段。SiC 陶瓷因其 与C_f/SiC 复合材料基体良好的物理化学相容性和优异的 抗氧化性能,被广泛用于C_f/SiC 复合材料防护涂层。然 而,单一的 SiC 涂层会与高温水蒸气反应生成挥发性的 Si(OH)₄ 而过早失效^[6]。因此,目前的研究主要集中在 SiC 层表面制备氧化物陶瓷涂层^[7-9]。

鉴于硅酸锆 (ZrSiO₄) 具有高熔点 (2250 ℃)、低 热导率 (1.68 W (m K)⁻¹, 1573 K)、低的氧透过率 (约 为 YSZ 的 1%)、良好的耐腐蚀性等优异性能,已成为 C_f/SiC 复合材料防护涂层最有潜力的候选材料之一^[10,11]。 Liu 等人^[12]在 C/C 复合材料表面制备了 ZrSiO₄/SiC 涂 层,该涂层体系在 1773 K 氧化 332 h 后,其质量损失仅 为 16.13×10⁻³ g/cm²,有效地保护 C/C 复合材料基体。Sun 等人^[13]采用超音速等离子喷涂制备了 ZrSiO4 涂层,涂层 在 1773 K 氧化 97 h 以及经历 9 次从室温到 1773 K 的热 循环后,失重率仅为 0.08%,显示出优异的抗氧化性 能^[13]。据文献报道[14],在等离子喷涂过程中,ZrSiO₄ 会发生部分分解生成 ZrO_2 (t- ZrO_2 及 m- ZrO_2) 和无定型 的 SiO₂;在高温下(t,m)-ZrO₂和无定型的 SiO₂会发生反 应重新生成ZrSiO4,并伴随着较大的体积收缩(约25%), 导致涂层中孔隙的形成^[15]。因此,改善ZrSiO₄涂层中 ZrO₂ 在高温下的相变行为是当前亟待解决的问题之 一。ZrO2在不同的温度下有着不同的晶体结构,当立方 相(c-ZrO₂)或四方相(t-ZrO₂)向单斜相(m-ZrO₂)转 变时,伴随着4%~6%的体积膨胀。而稀土氧化物Y2O3 能够有效地提高 ZrO_2 的高温相稳定性。其中,氧化钇部 分稳定氧化锆(质量分数 6%~8%的 Y₂O₃ 稳定 ZrO₂, YSZ)已在燃气涡轮发动机得到了广泛应用^[16,17]。然 而,等离子喷涂 Y₂O₃掺杂 ZrSiO₄涂层的微观组织、高 温烧结行为和相结构变化鲜有报道。

本工作主要研究 Y₂O₃ 掺杂后 ZrSiO₄ 涂层的微观组 织、相结构和高温烧结行为。采用大气等离子喷涂制备 了 ZrSiO₄和 ZrSiO₄-5%Y₂O₃ 涂层,研究了 Y₂O₃ 掺杂后 涂层的微观组织结构和力学性能。最后,研究了 Y₂O₃ 掺杂 ZrSiO₄ 涂层在 1300 ℃烧结不同时间后的相结

收稿日期: 2021-09-04

基金项目:国家重点研发计划(2019YFE0107500);国家自然科学基金(51972002);安徽省自然科学基金(1908085QE219)

作者简介: 王 鑫, 男, 1996 年生, 硕士生, 安徽工业大学现代表界面工程研究中心, 安徽 马鞍山 243002, E-mail: 1343697741@qq.com

稀有金属材料与工程

构,评估了 Y₂O₃ 的加入对 ZrSiO₄ 高温相稳定性的影 响,为后续研究不同 Y₂O₃ 掺杂浓度对 ZrSiO₄ 涂层的微 观组织结构及性能的影响奠定基础。

1 实 验

以尺寸为 15 mm×15 mm×5mm 的石墨板为基体材料,在喷涂前进行粗化处理,然后超声清洗 30 min 清理基体表面。试验选择 ZrSiO₄ 及 ZrSiO₄-5%Y₂O₃(质量分数)作为涂层材料。其中,ZrSiO₄-5%Y₂O₃ 粉末通过在ZrSiO₄中加入 5%的Y₂O₃球磨混合后制成造粒浆料。浆料的固含量为 40%,并在浆料中加入 4%的 PVA 作为粘结剂。最后,将制备好的浆料通过喷雾造粒后烧结制成喷涂粉末。

采用大气等离子喷涂系统(APS, Oerlikon Metco UniCoatProTM, F4MB-XL 喷枪,瑞士)制备 ZrSiO₄ 及 ZrSiO₄-5%Y₂O₃ 涂层的喷涂工艺参数见表 1。此外,为了 研究 Y₂O₃ 掺杂后 ZrSiO₄ 涂层在高温下的烧结行为和物 相转变规律,将 ZrSiO₄ 及 ZrSiO₄-5%Y₂O₃ 涂层在 1300 ℃ 下分别烧结 6、12、24、和 48 h,对其微观组织结构及 物相进行表征。

采用 Phenom XL 扫描电子显微镜(SEM/EDS,荷 兰)对样品的微观组织及元素分布进行分析;采用 Rigaku Ultima IV X 射线衍射仪(XRD, Cu 靶,Kα₁ 射线, λ=0.154 178 nm,扫描角度为 10 ~80 °,扫描速度为 10 %min,日本)确定样品的物相组成;采用 Image J 图 形软件分析计算涂层的孔隙率,为了保证数据计算的准 确性,选取 10 个不同部位的 300×截面照片计算后取平 均值。采用 MH-5LD 显微维氏硬度计对涂层的硬度进行 测试,载荷为 300 g,保压时间 15 s。根据 Guo 等人^[18] 的研究,涂层的断裂韧性可通过测量维氏压痕的参数代 入公式(1)进行计算:

*K*_{IC}=0.16*Ha*^{1/2}(*c/a*)^{-3/2} (1) 其中,*H*为显微硬度(GPa),*a*为对角线长度的1/2,*c*

为维氏压痕中心至裂纹末端的长度。

表1 等离子喷涂 ZrSiO4及 ZrSiO4-5% Y2O3涂层的喷涂工艺参数

Table 1 Processing parameters of plasma-sprayed $ZrSiO_4$ and

ZrSiO ₄ -5%Y ₂ O ₃ coatings	5
--	---

Processing parameter	Value
Current/A	600
Power/kW	40
Ar flow rate/L·min ⁻¹	25
Powder feed rate/g·min ⁻¹	35
Spraying distance/mm	80
Spray gun scanning speed/cm·min ⁻¹	500

2 结果与讨论

2.1 微观组织结构与物相组成

图1是等离子喷涂 ZrSiO₄ 及 ZrSiO₄-5%Y₂O₃涂层的 表面形貌。从图中可以看出,添加 Y₂O₃ 后 ZrSiO₄ 涂层 表面熔化效果变好,熔滴铺展更加均匀。而纯 ZrSiO₄ 涂 层表面出现大量的溅射颗粒及少量网状微裂纹。网状微 裂纹主要是由于在熔滴扁平化过程中凝固收缩,在拉应 力的作用下,界面边缘萌生微裂纹并向界面中心区域扩 展形成。

图 2 是 ZrSiO₄ 及 ZrSiO₄-5%Y₂O₃ 涂层的截面形貌以 及相应点的 EDS 结果。可以发现 ZrSiO₄ 及一种是深灰 色大块状组织,另一种是浅灰色条带状组织。其中,浅灰 色条带状组织将深灰色大块状组织围绕,呈包裹态,见 图 2a1、2b1。不同的是,随着 Y₂O₃ 的加入,深灰色大 块状组织的占比在涂层中明显减少,而浅灰色条带状组 织占比明显增多。对 ZrSiO₄ 涂层及 ZrSiO₄-5%Y₂O₃ 涂层 中的 2 种结构进行能谱分析后可知(图 2a2、2b2),深 灰色大块状组织(Spot 1、Spot 3)其 Zr 和 Si 的化学计 量比接近 1:1,属于富 ZrSiO₄ 相,而浅灰色条带状组织 (Spot 2、Spot 4)中 Si 的相对含量相较于 Spot 1 有所 减少,Zr 含量增多,推测可能是由 ZrO₂及无定型 SiO₂ 组成。此外,对比 ZrSiO₄ 涂层,ZrSiO₄-5%Y₂O₃ 涂层的

图 1 ZrSiO₄及ZrSiO₄-5%Y₂O₃涂层的表面形貌 Fig.1 Surface morphologies of ZrSiO₄ (a1, a2) and ZrSiO₄-5%Y₂O₃ (b1, b2) coatings

	Spot 1 i	n Fig.2a2
a state of the second s	Element	Content/at%
A CARLES AND A CAR	0	72.29
	Zr	14.26
	Si	13.46
	Spot 2 i	n Fig.2a2
	Element	Content/at%
	0	74.76
	Zr	14.86
40 μm ⁴ 20 μm	Si	10.38
b1 b2	Spot 3 i	n Fig.2b2
and a start of the	Element	Content/at%
And the second second second	0	71.87
and the second sec	Zr	14.48
the second se	Si	13.26
	Y	0.40
	Spot 4 i	n Fig.2b2
A start and a start and a start and a start and a start	Element	Content/at%
	0	71.90
	Zr	17.84
10 jum	Si	9.74
zo prin	Y	0.52

图 2 ZrSiO₄及 ZrSiO₄-5% Y₂O₃涂层的截面形貌及图 2a2、2b2 中标识点的 EDS 分析结果

Fig.2 Cross-sectional morphologies and EDS analysis results of marked spots in Fig.2a2 and Fig.2b2 of ZrSiO₄ (a1, a2) and ZrSiO₄-5%Y₂O₃ (b1, b2) coatings

深灰色大块状组织中存在着浅灰色颗粒。由于等离子喷涂是一个非平衡态的过程,且等离子焰流温度极高。因此,在喷涂过程中,ZrSiO₄会分解成 ZrO₂及无定型 SiO₂,而 SiO₂ 的饱和蒸汽压较高,发生了部分挥发,导致 Si 含量减少,其反应过程见公式(2)和公式(3)^[13,19]。

$$ZrSiO_4(s) \rightarrow ZrO_2(s) + SiO_2(s)$$
(2)

$$ZrSiO_4(s) \rightarrow ZrO_2(s) + SiO_2(g)$$
 (3)

图 3 是 ZrSiO₄及 ZrSiO₄-5%Y₂O₃ 涂层的 XRD 图 谱。由图可知等离子喷涂 ZrSiO4 涂层主要由 ZrSiO4 相 (JCPDF No.70-0402)、t-ZrO2相(JCPDF No.79-1764)及少 量 m-ZrO₂相(JCPDF No.86-1450)组成。相对于纯 ZrSiO₄ 涂层, ZrSiO₄-5%Y₂O₃ 涂层主要由 ZrSiO₄ 相(JCPDF No.70-0402)及 c-ZrO₂相(JCPDF No.49-1642)组成,t-ZrO₂ 和少量 m-ZrO₂ 相的衍射峰消失。根据公式(2) 可 知,ZrSiO4在喷涂过程中会生成无定型的SiO2,因此等 离子喷涂 ZrSiO₄-5%Y₂O₃涂层中可能还存在着一定数量 的无定型 SiO_2 。结合图 2 的 SEM 截面形貌,其 ZrSiO₄ 涂层中的深灰色组织明显多于 ZrSiO₄-5%Y₂O₃ 涂 层, XRD 图谱中等离子喷涂 ZrSiO4 涂层的 ZrSiO4 相峰 强明显大于 ZrSiO₄-5%Y₂O₃ 涂层,两者结果基本一 致。ZrSiO₄-5%Y₂O₃ 涂层中的浅灰色条带状组织明显多 于 ZrSiO₄ 涂层。此外, ZrSiO₄-5% Y₂O₃ 涂层中的物相主 晶相为 c-ZrO₂, 而 ZrSiO₄ 峰的衍射强度较低, 这也与截 面形貌中的组织分布相符合。对于等离子喷涂 ZrSiO4 涂

层,由于 ZrSiO₄在等离子焰流中发生分解,形成的 ZrO₂ 以 t-ZrO₂相和少量 m-ZrO₂相为主,而加入 Y₂O₃后,Y³⁺ 进入 ZrO₂的晶格中促进 t-ZrO₂和 m-ZrO₂向 c-ZrO₂转变。

表 2 是等离子喷涂 ZrSiO₄ 及 ZrSiO₄-5%Y₂O₃ 涂 层的力学性能。对比纯 ZrSiO₄ 涂层硬度(HV)(553.4± 67)×9.8 MPa, ZrSiO₄-5%Y₂O₃ 涂层的硬度(HV)达到 (575.2±69.4)×9.8 MPa, 有略微提升。同样地,添加Y₂O₃ 后,涂层的断裂韧性从(1.87±0.10) MPa m^{1/2} 提升到 (2.14±0.67) MPa m^{1/2}。此外,添加Y₂O₃ 后,涂层孔隙率 从(5.50±0.68)%下降到(4.66±0.64)%,说明添加Y₂O₃ 有 助于 ZrSiO₄涂层致密度的提高。结合图 2 的 SEM 截面 形貌及图 3 的 XRD 图谱可知,ZrSiO₄ 涂层中的深

图 3 ZrSiO₄及 ZrSiO₄-5%Y₂O₃涂层的 XRD 图谱 Fig.3 XRD patterns of ZrSiO₄ and ZrSiO₄-5%Y₂O₃ coatings

表 2 ZrSiO₄及 ZrSiO₄-5%Y₂O₃涂层的力学性能

Table 2 Mechanical properties of $ZrSiO_4$ and $ZrSiO_4$ -5% Y_2O_3 coatings

Coating	Hardness, HV/×9.8 MPa	Fracture toughness, $K_{\rm IC}/{\rm MPa}~{\rm m}^{1/2}$	Porosity/%
ZrSiO ₄	553.4±67	1.87±0.10	5.50±0.68
$ZrSiO_4$ -5% Y_2O_3	575.2±69.4	2.14±0.67	4.66±0.64

灰色组织(富 ZrSiO₄相)占比多于 ZrSiO₄-5%Y₂O₃涂 层,而 ZrSiO₄-5%Y₂O₃涂层中的浅灰色条带状组织占比 多于 ZrSiO₄涂层。研究表明,(t,c)-ZrO₂通常作为陶瓷增 强相对陶瓷材料起到增强增韧作用。Rendtorff 等人^[20] 研究了 ZrO₂含量对 mullite/ZrO₂/ZrSiO₄复合陶瓷材料力 学性能的影响,结果显示,ZrO₂的添加能够显著地提高 复合陶瓷的断裂韧性,且增韧效果随着 ZrO₂含量的增加 而增加。而 ZrSiO₄-5%Y₂O₃ 涂层具有较高的 ZrO₂含 量,因此,添加 Y₂O₃后的 ZrSiO₄涂层中也存在大量的 ZrO₂相,有助于提高 ZrSiO₄涂层的硬度和断裂韧性。

2.2 涂层在 1300 ℃烧结后的微观组织及相组成

图 4 是 ZrSiO₄ 涂层 1300 ℃高温烧结不同时间的表 面形貌。可以发现高温烧结后,涂层表面发生了明显的 再结晶,但再结晶晶粒比较细小,且表面逐渐析出了一 些细小的浅色颗粒。此外,高温烧结后的涂层表面出现 了孔洞,这是由于在高温下(t,m)-ZrO₂ 和无定型的 SiO₂ 会发生反应重新生成 ZrSiO₄,引起涂层体积收缩。图 5 是 ZrSiO₄涂层高温 1300 ℃烧结不同时间的截面形貌。对 比原始态的 ZrSiO₄涂层(见图 2a1 和 2a2),1300 ℃烧 结后的 ZrSiO₄涂层中深灰色大块状组织的占比增加,而 原来的浅灰色组织仍呈条带状分布,但变得不再连续,有浅色细小颗粒在条带中析出。对 ZrSiO₄涂层高温 1300 ℃烧结 48 h 后截面进行 EDS 能谱分析后可知(见 图 6),析出的浅色颗粒(Spot 2)主要由 Zr、O 元素组 成,推测主要成分为 ZrO₂。随着烧结时间的增加,浅色 颗粒的析出量逐渐增加。这主要是浅灰色条带状组织主 要由(t,m)-ZrO₂和无定型的 SiO₂组成,在高温烧结过程 中,(t,m)-ZrO₂与 SiO₂重新反应生成 ZrSiO₄,因此涂层 中的深灰色组织占比提升。此外,由于该反应伴随着较 大的体积收缩,因此涂层中生成较大的孔隙和微裂纹。

图7是ZrSiO₄-5%Y₂O₃涂层1300℃烧结不同时间的 表面形貌。从图中可以发现高温烧结后,涂层表面发生 了明显的再结晶,在相同的烧结时间内,其再结晶晶粒 大小明显大于纯ZrSiO₄涂层。此外,涂层表面同样有浅 色ZrO₂颗粒析出,且随着烧结时间的增加,浅色颗粒的 析出量不断增加。研究表明,c-ZrO₂与无定型SiO₂反应 所带来的体积收缩远大于t-ZrO₂和m-ZrO₂。因此,相较 于ZrSiO₄涂层,ZrSiO₄-5%Y₂O₃涂层表面出现了较大的 孔隙和裂纹。图8是ZrSiO₄-5%Y₂O₃涂层1300℃高温烧 结不同时间的截面形貌。涂层中原有的浅灰色条带状组

图 4 ZrSiO₄涂层 1300 ℃高温烧结不同时间的表面形貌

Fig.4 Surface morphologies of ZrSiO₄ coating sintered at 1300 °C for different time: (a1, a2) 6 h; (b1, b2) 12 h; (c1, c2) 24 h; (d1, d2) 48 h

图 5 ZrSiO₄涂层 1300 ℃高温烧结不同时间的截面形貌

Fig.5 Cross-sectional morphologies of ZrSiO₄ coating sintered at 1300 °C for different time: (a1, a2) 6 h; (b1, b2) 12 h; (c1, c2) 24 h; (d1, d2) 48 h

	Spot 1	
The second have have	Element	Content/at%
2 The second second	0	54.66
2000 11 200	Zr	24.52
	Si	20.81
+ ²	Spot 2	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Element	Content/at%
the second se		
and the second sec	0	53.38
	O Zr	53.38 42.12
<u>10 µm</u>	O Zr Si	53.38 42.12 4.50

图 6 ZrSiO₄涂层 1300 ℃高温烧结 48 h 后截面形貌及标识点 EDS 分析结果

Fig.6 Cross-sectional morphology and EDS analysis results of marked spots of ZrSiO4 coating sintered at 1300 °C for 48 h

织随着烧结时间的增加逐渐消失,在条带状组织分布的位置上析出了大量浅色颗粒。对涂层中的深灰色组织和浅色颗粒进行能谱分析可知,涂层中的深灰色相(Spot 1)属于富 ZrSiO₄ 相,对比烧结前的条带状组织,析出的浅色颗粒(Spot 2)中 Si 含量显著减少,属于富 ZrO₂相,见图 9。相较于 ZrSiO₄涂层,ZrSiO₄-5%Y₂O₃涂层在高温烧结后涂层内部出现了大量孔洞与裂纹,这主要是由涂层中 ZrO₂和无定型的 SiO₂反应重新形成ZrSiO₄带来的体积收缩引起,其体积收缩明显比 ZrSiO₄ 涂层剧烈。

图 10 和图 11 是 ZrSiO₄及 ZrSiO₄-5%Y₂O₃涂层在

1300 ℃高温烧结不同时间的 XRD 图谱。相较于制备态 ZrSiO₄ 涂层,经过 1300 ℃烧结 6 h 后涂层主要含有 ZrSiO₄ 相和少量的(t,m)-ZrO₂ 相,ZrSiO₄ 相含量显著增加 且 t-ZrO₂含量显著减少。这主要是由于制备态涂层中的 (t,m)-ZrO₂ 和无定型 SiO₂ 在高温烧结过程中反应重新生 成 ZrSiO₄ 相。在 1300 ℃烧结 6 h 后再继续增加烧结时 间,涂层中各相含量基本不变,其主晶相仍为 ZrSiO₄ 相,并包含着剩余的 t-ZrO₂和 m-ZrO₂。

1300 ℃烧结 6 h 后, ZrSiO₄-5%Y₂O₃涂层中 ZrSiO₄ 相显著增加, c-ZrO₂ 相减少, 但没有发现(t,m)-ZrO₂ 相存 在。随着烧结时间继续延长, 涂层中的物相的种类和相应

图 7 ZrSiO₄-5% Y₂O₃ 涂层 1300 ℃高温烧结不同时间的表面形貌

Fig.7 Surface morphologies of $ZrSiO_4$ -5% Y_2O_3 coating sintered at 1300 °C for different time: (a1, a2) 6 h; (b1, b2) 12 h; (c1, c2) 24 h; (d1, d2) 48 h

图 8 ZrSiO₄-5%Y₂O₃涂层 1300 ℃高温烧结不同时间的截面形貌

Fig.8 Cross-sectional morphologies of ZrSiO₄-5% Y₂O₃ coating sintered at 1300 °C for different time: (a1, a2) 6 h; (b1, b2) 12 h; (c1, c2) 24 h; (d1, d2) 48 h

	Spot 1	
ALL AND AND AND	Element	Content/at%
	0	53.26
and the second	Zr	25.92
1	Si	18.44
	Y	2.38
the second se		
	Sp	oot 2
	Sp Element	oot 2 Content/at%
	Sp Element O	oot 2 Content/at% 54.02
	Sp Element O Zr	tot 2 Content/at% 54.02 32.68
	Element O Zr Y	tot 2 Content/at% 54.02 32.68 8.64

图 9 ZrSiO₄-5% Y₂O₃ 涂层 1300 °C高温烧结 48 h 后截面形貌及标识点 EDS 分析结果

Fig.9 Cross-sectional morphology and EDS analysis results of marked spots of ZrSiO₄-5% Y₂O₃ coating sintered at 1300 °C for 48 h

图 10 ZrSiO₄涂层 1300 ℃高温烧结不同时间的 XRD 图谱

Fig.10 XRD patterns of ZrSiO₄ coatings sintered at 1300 °C for different time

图 11 ZrSiO₄-5%Y₂O₃涂层 1300 ℃高温烧结不同时间的 XRD 图谱 Fig.11 XRD patterns of ZrSiO₄-5%Y₂O₃ coatings sintered at 1300 ℃ for different time

衍射峰强度均没有发生明显变化,表明 5% Y₂O₃添加后促进了 ZrSiO₄涂层中(t,m)-ZrO₂相向 c-ZrO₂相彻底转变。

3 结 论

1) 等离子喷涂 $ZrSiO_4$ 涂层主要由 $ZrSiO_4$ 、 $t-ZrO_2$ 及少量的 m- ZrO_2 组成,而等离子喷涂 $ZrSiO_4$ -5% Y_2O_3 涂层主要由 $c-ZrO_2$ 及少量 $ZrSiO_4$ 相及无定型 SiO_2 组 成。这主要是由于添加 Y_2O_3 后, Y^{3+} 进入 ZrO_2 的晶格中 促进 $t-ZrO_2$ 和 m- ZrO_2 向 $c-ZrO_2$ 转变。

2) Y₂O₃ 掺杂略微提高了 ZrSiO₄ 涂层的力学性能。相 较于 ZrSiO₄ 涂层, ZrSiO₄-5%Y₂O₃ 涂层的硬度(HV)从 (553.4±67) ×9.8 MPa 提升到(575.2±69.4) ×9.8 MPa, 其断裂 韧性从(1.87±0.10)MPa m^{1/2} 提升到(2.14±0.67)MPa m^{1/2}。

3) 在 1300 ℃高温烧结 48 h 后,等离子喷涂 ZrSiO₄ 涂层中(t,m)-ZrO₂和无定型 SiO₂反应重新生成 ZrSiO₄相, 该反应伴随着体积收缩,使得涂层中存在着大量孔隙和 裂纹。相较于纯 ZrSiO₄ 涂层,在高温烧结后 ZrSiO₄-5%Y₂O₃涂层中主要是 c-ZrO₂相而(t,m)-ZrO₂相消 失,添加 Y₂O₃ 有助于涂层中的 ZrO₂ 保持在立方相 (c-ZrO₂),提高了 ZrO₂的高温物相稳定性。

参考文献 References

- Jang B K, Nagasgima N, Kim S et al. Journal of the European Ceramic Society[J], 2020, 40: 2667
- [2] Zhao Shuang(赵 爽), Yang Feiyue(杨飞跃), Chen Guobing(陈国兵) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2020, 49(4): 1256
- [3] Xu Y, Hu X, Xu F et al. Ceramics International[J], 2017, 43: 5847
- [4] Tong M, Fu Q, Hu D et al. Journal of the European Ceramic Society[J], 2021, 41: 4067
- [5] Ouyang X, Li Z, Xiao P et al. New Carbon Materials[J], 2019, 34(5): 472
- [6] Wada M, Matsudaira T, Kawashima N et al. Acta Materialia[J], 2017, 135: 372
- [7] Liu X S, Fu Q G, Zhang J P et al. Ceramics International[J], 2020, 46: 28 887
- [8] Huang J F, Zeng X R, Li H J et al. Surface & Coatings Technology[J], 2005,190: 255
- [9] Zheng G B, Sano H, Uchiyama Y. Composites: Part B[J], 2011, 42: 2158
- [10] Qian Yangbao(钱扬保), Zhang Weigang(张伟刚). Journal of the Chinese Ceramic Society(硅酸盐学报)[J], 2008, 36(8): 1103
- [11] Ding Y, Jiang Z, Li Y et al. Journal of Alloys and Compounds[J], 2018, 735: 2190
- [12] Liu J, Cao L Y, Huang J F et al. Surface & Coatings Technology[J], 2012, 206: 3270
- [13] Sun C, Li H J, Fu Q G et al. Journal of Thermal Spray Technology[J], 2013, 22(4): 525
- [14] Pavlikjr R S, Holland H J, Payzant E A et al. Journal of the Amercian Ceramic Society[J], 2001, 84(12): 2930
- [15] Schelz S, Enguehard F, Caron N et al. Journal of Materials Science[J], 2008, 43: 1948
- [16] Xue Zhaolu(薛召露), Guo Hongbo(郭洪波), Gong Shengkai(宫 声凯) et al. Journal of Aeronautical Materials(航空材料学 报)[J], 2018, 38(2): 10
- [17] Xu Huibin(徐惠彬), Gong Shengkai(宫声凯), Liu Fushun(刘福顺). Acta Aeronautica et Astronautica Sinica (航空学报)[J], 2000, 21:7
- [18] Guo Y Q, He W T, Guo H B. Ceramics International[J], 2020, 46: 18 888
- [19] Sun N C, Li H, Luo H et al. Surface & Coatings Technology[J], 2013, 235: 127
- [20] Rendtorff N M, Garrido L B, Aglietti E F. Ceramics International[J], 2010, 36: 781

Effect of Y₂O₃ Doping on Microstructure and Phase Structure of Plasma-Sprayed ZrSiO₄ Coatings

Wang Xin^{1,2}, Xue Zhaolu^{1,2,3}, Liu Xia^{1,2,3}, Deng Hailiang², Zhang Shihong^{1,2}

(1. Research Center of Modern Surface and Interface Engineering, Anhui University of Technology, Ma'anshan 243002, China)

(2. Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education,

Anhui University of Technology, Ma'anshan 243002, China)

(3. Anhui Ma Steel Surface Engineering Technology Co., Ltd, Ma'anshan 243000, China)

Abstract: $ZrSiO_4$ and Y_2O_3 doped $ZrSiO_4$ coatings were successfully prepared by atmospheric plasma spraying. The microstructure, mechanical properties and sintering behavior at 1300 °C of coatings were investigated. The results show that plasma-sprayed $ZrSiO_4$ coating is mainly composed of $ZrSiO_4$, t- ZrO_2 , a small amount of m- ZrO_2 and amorphous SiO_2 phases, while the $ZrSiO_4-5\% Y_2O_3$ coating contains c- ZrO_2 , a small amount of ZrSiO_4 phase and amorphous SiO_2. Compared with $ZrSiO_4$ coating, Y_2O_3 doping slightly improves the hardness and fracture toughness of $ZrSiO_4-5\% Y_2O_3$ coating. After sintering at 1300 °C for 48 h, (t,m)- ZrO_2 reacts with amorphous SiO_2 to form new $ZrSiO_4$ phase in plasma-sprayed $ZrSiO_4$ coating accompanied by volume shrinkage, resulting in a large number of pores and cracks in the coating. In contrast, c- ZrO_2 phase and $ZrSiO_4$ phase are the main phases in the $ZrSiO_4-5\% Y_2O_3$ coating. The addition of Y_2O_3 helps the ZrO_2 in the coating to maintain the cubic phase (c- ZrO_2), which improves the high-temperature phase stability of ZrO_2 .

Key words: atmospheric plasma spraying; Y₂O₃ doped ZrSiO₄ coating; microstructure; mechanical properties; high-temperature sintering behavior

Corresponding author: Xue Zhaolu, Ph. D., Research Center of Modern Surface and Interface Engineering, Anhui University of Technology, Ma'anshan 243002, P. R. China, E-mail: zhaoluxue@163.com