V₈₅Ti₁₀Y₅和 V₈₅Ti₁₀Cu₅合金的组织结构与 氢分离性能

杨 波¹, 孟 野¹, 唐柏林¹, 陈 修¹, 史晓斌¹, 陆 羽², 高 恒³, 任 伟³, 宋广生¹

(1. 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 材料科学与工程学院,安徽 马鞍山 243032)(2. 安徽工业大学 数理科学与工程学院,安徽 马鞍山 243032)

(3. 上海大学 理学院物理系, 上海 200444)

摘 要:利用高真空非自耗电弧熔炼炉制备了 $V_{85}Ti_{10}Y_5 和 V_{85}Ti_{10}Cu_5 氢分离合金。通过 SEM、TEM、XRD、氢渗透试验、PCT 吸氢试验、恒压缓冷试验,研究了 Y、Cu 元素的加入对合金氢渗透性能、氢溶解性能及抗氢脆性能的影响。$ $结果表明:铸态 <math>V_{85}Ti_{10}Y_5 和 V_{85}Ti_{10}Cu_5$ 合金组织均由 V-基体和第二相组成,但前者第二相是弥散分布的富 Y 颗粒,而 后者为既在晶内析出又沿晶界连续分布的铜钛金属间化合物。 $V_{85}Ti_{10}Y_5$ 合金中 Y_2O_3 的生成及 $V_{85}Ti_{10}Cu_5$ 合金中部分固 溶 Cu 的斥氢作用和 Cu_2Ti 形成使 V 中 Ti 的固溶量减少,进而降低合金中的氢浓度,减小氢固溶产生的内应力,提高 抗氢脆性能。 $V_{85}Ti_{10}Y_5 和 V_{85}Ti_{10}Cu_5$ 合金在缓冷过程中均未发生氢脆现象,表现出优异的抗氢脆性能,而且在 673 K 时的氢渗透率分别为 $0.139 \times 10^{-6} 和 0.174 \times 10^{-6} mol H_2 m^{-1} s^{-1} Pa^{0.5}$,是 $Pd_{77}Ag_{23}$ 氢渗透率的 5.5 和 6.9 倍,与商用钯合金 相比均展现出较高的渗透率。

关键词:氢分离;V基合金膜;V₈₅Ti₁₀Y₅;V₈₅Ti₁₀Cu₅
中图法分类号:TG146.4⁺13
文献标识码:A

氢是一种重要的工业气体,随着科技的进步,一些 领域对氢气的纯度也提出了更高的要求,高纯氢甚至超 高纯氢的应用领域也在不断延伸。在一些电子工业中,高 纯氢有着极大需求量,如半导体集成电路生产中需要超高 纯氢阻止微量杂质的掺入,避免半导体的表面改性;二 极管、多晶硅、光导纤维等制造过程均需要大量高纯氢 气。此外,氢还在石油化工、浮法玻璃生产、食品加工、 航空航天、燃料电池等领域发挥着重要作用。目前,无 论工业上主流的氢气制备方法如化石能源制氢^[1]、煤气 化制氢^[2]、天然气制氢^[3],还是可再生电解水制氢^[1]均只 能得到含氢混合物,无法达到高端工业生产中所要求的 氢纯度,需要分离纯化。金属膜氢分离法是高纯度氢获 取的一个有效方式,其操作简单、生产成本低、氢纯化 程度高,可有效地提取高纯氢。

国内外对 Pd 合金膜的研究最早且是目前已商业化使 用的氢分离膜, Pd-Ag 合金化大大提高了膜的抗氢脆性, 解决了纯 Pd 发生氢脆的问题⁽⁴⁾。目前,商业应用的 Pd 合 文章编号: 1002-185X(2023)09-3338-07

金膜厚度约几十微米,由于 Pd 金属昂贵的价格,其难 以大规模应用。虽然已尽可能将 Pd 膜厚度减小以提高 氢通量,但 Pd 合金膜氢通量低的本质原因还是其渗透 率低。V 合金具有比 Pd 合金膜更高的氢渗透率及较低的 成本^[5-6],在氢分离合金膜纯化领域有潜在的应用前 景。国内外学者对 V 基合金膜做了大量研究,通过 V 中 Ni、Al、Mo、W、Cr、Fe、Co等元素的固溶来降低膜中 氢溶解度^[7-10],进而提高了膜的抗氢脆性能,但是相比于 Pd-Ag 还是有一定的差距。V 中 Ti 的固溶提高了合金中 氢浓度而不利于合金膜抗氢脆性能的提高,但却也能提高 V 基合金膜渗透率^[11]。基于 Ti 对 V 基合金膜渗透率的贡 献,在 V₉₀Ti₁₀的基础上,用 Y 和 Cu 取代部分 V 设计出 V₈₅Ti₁₀Y₅和 V₈₅Ti₁₀Cu₅合金,旨在开发比商用 Pd 合金膜渗 透率高且耐氢脆寿命长的高性能 V 基合金膜材料。

1 实 验

采用纯金属 V、Ti、Y、Cu (纯度大于 99.95%) 作

收稿日期: 2022-12-24

基金项目:国家自然科学基金(51875002);省部共建高品质特殊钢冶金与制备国家重点实验室;上海市钢铁冶金新技术开发应用重点实验室开放课题(SKLASS 2022-13);上海市科学技术委员会课题(19DZ2270200);先进金属材料绿色制备与表面技术教育部重点实验室开放课题(GFST2022KF08)

作者简介:杨 波,男,1997年生,硕士,安徽工业大学材料科学与工程学院,安徽 马鞍山 243032, E-mail: 3367401698@qq.com

为原材料,以纯金属的原子分数(at%)配制质量约 35 g 的 V₈₅Ti₁₀Y₅和 V₈₅Ti₁₀Cu₅合金。将配制后的合金原料在 高真空非自耗电弧熔炼炉中反复熔炼 6 次以上得到成分 均匀的合金铸锭。随后使用线切割在合金锭的中间部分 取直径为 16 mm,厚度为 0.8 mm 的圆片用于微观组织 和性能测试分析。

对圆片表面进行研磨和抛光,此后采用 Bruker D8 Advance X 射线衍射仪 (XRD)进行物相分析。X 射线为 Cu Kα 射线,步长 0.02°,扫描速度 5 %min, 2θ=20 ~100°。 使用配有 X 射线能谱 (EDS) 仪的 JSM-6510LV 型扫描 电子显微镜 (SEM)观察样品的组织形貌,扫描模式使 用 BSE 模式,加速电压 20 kV。此外,采用配有 X 射 线 (EDS)能谱仪的场发射透射电子显微镜 (JEM-2100) 对铸态 V 基合金中的第二相进行形貌、选区电子衍射及 高分辨分析。

将两面经研磨、抛光过厚度约为 0.6 mm 的圆片置 于高真空磁控溅射设备中,在正反两面镀上约 150 nm 厚 的 Pd 层,防止铸态 V 基合金膜氧化并催化氢分子解离、 氢原子重组^[12-14],随后使用本课题组设计的氢渗透装置 进行 673 和 573 K 条件下的氢渗透测试,在正式试验之 前,使用 0.2 MPa 的氢气压力对膜片进行活化处理,活 化后对管路上端设定 0.15~0.6 MPa 的氢气压力,下端压 力为 0.1 MPa 的大气压,待压力和流量稳定时通过质量 流量计记录氢气流量。以上是氢渗透试验过程,抗氢脆 实验过程与上述类似。在膜片活化处理之后,将氢气压 力设定至 0.6 MPa,从 673 K 以 2 ℃/min 的冷却速率开始 降温,分析温度与流量之间的关系,绘制缓冷曲线。当 流量突然增加时,说明膜片开裂,随后停止试验。

采用等容压差法测定合金的吸氢能力,使用 0.5 g 合金粉末进行压力-浓度-温度(PCT)吸氢试验。试验设 置测试压力范围 0~0.6 MPa,记录 673、573 K 时吸氢量 随压力的变化。

2 结果与分析

2.1 铸态合金 XRD 分析

图 1 为铸态 V₈₅Ti₁₀Cu₅、V₈₅Ti₁₀Y₅和对照铸态合金 V₉₀Ti₁₀ 的 XRD 图谱。根据图 1 可知,铸态 V₉₀Ti₁₀ 检测 为单相 V 基固溶体合金,且由于固溶于 V 中 Ti 原子尺 寸 (0.14615 nm)大于 V (0.1316 nm)^[15],致使 V 衍射峰 向低角度偏移。铸态 V₈₅Ti₁₀Y₅检测为双相 (V 基固溶体 相和 Y₂O₃相)合金,结合 V-Y 二元相图,Y 无法固溶 于 V,V 衍射峰的偏移也归因于 Ti 原子在 V 中的固溶。 此外,铸态 V₈₅Ti₁₀Cu₅ 未检测出第二相,其 V 衍射峰低 角度偏移量小于 V₉₀Ti₁₀、V₈₅Ti₁₀Y₅,可能因为 Ti 在 V 中的固溶量减少或 Cu 原子 (原子尺寸 0.1278 nm)在 V

中固溶而抵消了 Ti 原子固溶产生的晶格膨胀效应。总 之,铸态 V₉₀Ti₁₀、V₈₅Ti₁₀Y₅、V₈₅Ti₁₀Cu₅中 V 基固溶体 相晶格常数都由于 Ti 的固溶而或多或少大于纯 V。

2.2 组织分析

图 2 为铸态 V₈₅Ti₁₀Y₅ 合金的 SEM 照片、EDS 元素 面扫描和第二相颗粒的 TEM 照片及 SAED 花样。从图 2a 可以看出, 第二相(白色) 颗粒均匀分布于 V 基固溶 体相中, 直径介于 1~15 µm 之间。由于 V、Ti、Y 原子 间的尺寸效应, 第二相颗粒含极少量 V、Ti 并富集大量 Y, 固溶 Ti 的 V 基体难以固溶 Y, 如图 2b 所示。值得 注意的是, Y 和 Ti 常作为脱氧剂, 但 O 与 Y 的电负性 差值(2.22)大于O与Ti的电负性差值(1.93)使Y对 O的亲和力更强^[16-18],在样品的制备过程中Y易与O首 先发生反应。一方面,在熔炼时真空室内极少量的氧和 原材料 V 中氧会优先与 Y 结合形成 Y₂O₃;另一方面, 在抛光后膜表面接触空气易与 Y 反应而形成 Y₂O₃,这 就导致 XRD 结果显示有 Y2O3 的存在。考虑到原材料的 纯度、电弧熔炼炉的真空度及 Y 的添加量, V₈₅Ti₁₀Y₅ 合金中 Y 含量应远高于 O 含量,只有少量 Y 与 O 反应 生成 Y₂O₃。所以, V₈₅Ti₁₀Y₅合金内部第二相以多数的 Y 颗粒和极少量的 Y2O3 形式分布于 V 基体晶粒和晶界 上。为了进一步确定 V85Ti10Y5 合金中存在 Y 第二相颗 粒,借助 TEM 对富 Y 的第二相粒子进行 SAED 花样分 析,确定了第二相 Y 颗粒的存在, Y 颗粒的形貌像及对 应的衍射花样标定见图 2c 和 2d。

通过观察图 3a 中 V₈₅Ti₁₀Cu₅的 SEM 照片,发现连续 的第二相(白色)沿晶界析出,且晶内也析出了大量弥散 分布的第二相(白色)。图 3b 的 EDS 元素面扫描显示沿 晶界析出的第二相主要含 Ti 和 Cu 元素,结合相图可推 测其为 Cu-Ti 金属间化合物。图 3c 是对图 3a 中晶界 (region 1)和晶内(region 2)的析出相点 EDS 能谱, 结果表明 Cu 与 Ti 成分比接近 2:1,说明这些析出相主

图 2 铸态 $V_{85}Ti_{10}Y_5$ 合金的 SEM 照片、EDS 元素面扫描和第二相颗粒的 TEM 照片及其 SAED 花样

Fig.2 SEM image (a), EDS element mappings of V, Ti and Y (b), TEM image (c) and SAED pattern (d) of second phase particle of the as-cast $V_{85}Ti_{10}Y_5$ alloy

图 3 铸态 V85Ti10Cu5 的 SEM 照片、EDS 元素面扫描、图 3a 中区域 1 和区域 2 的 EDS 能谱及 TEM 和 HRTEM 照片

Fig.3 SEM image (a), EDS element mapping (b), EDS spectra of region 1 and region 2 in Fig.3a (c); TEM and HRTEM images (d-f) of as-cast $V_{85}Ti_{10}Cu_5$

要为 Cu₂Ti 金属间化合物。由于 Cu₂Ti 中透氢元素较 少,其氢溶解扩散能力较差,在 V85Ti10Cu5 中可作为支 撑相以增强合金膜的抗氢脆性能。通过 TEM 对第二相 进行进一步分析,确定了 Cu₂Ti 金属间化合物的存在, 其衍射花样及标定见图 3d。从图 3e 中的高分辨图像的 相界(红色虚线)的两边分别为Cu₂Ti 相和 V 基固溶体 相,两相对应的晶面、晶面间距的标定见图 3f。对高分 辦下部分相界(红色方框)进行快速傅里叶变换(FFT), 发现得到的衍射花样中两相亮斑有重合部分(图 3e 红色 方框内虚线圆圈内),说明两相在相界处存在共格关系, 对重合亮斑进一步进行反向快速傅里叶变换,得到对应 的晶格条纹(见图 3e 中间图中红色方框),与高分辨相 界处对应的位置中未发现位错的存在,进一步证实了两 相在相界处具有很好的共格关系。共格的存在,弹性畸 变小,导致产生的应力较小,可能有助于合金膜抗氢脆 性能的提高。

2.3 氢溶解性能

图4为铸态 V₈₅Ti₁₀Y₅、V₈₅Ti₁₀Cu₅和对照合金 V₉₀Ti₁₀ 在 673 和 573 K 时的 Pa^{0.5}-H/M 的 PCT 曲线,图中横坐 标为氢与合金元素的摩尔比 H/M,纵坐标为 Pa^{0.5}。从图 4 中可以看出,随着平衡压力的增加,吸氢量逐渐增加。 在同一压力下,横坐标 H/M 值越大,合金膜中氢浓度越 高,吸氢量越大。此外,由于氢的溶解为放热反应,致 使温度降低时,3 种合金的氢溶解能力增加(图4)。加

入第3组元Y和Cu后,合金的氢溶解度降低较为明显。 相比于V,Cu对氢的亲和力弱,Cu加入V₈₅Ti₁₀Cu₅后, 一部分Cu溶于V基固溶体中,表现出斥氢作用,使氢溶 解降低;一部分Cu与Ti形成化合物,导致V基固溶体 中Ti含量减少,Ti作为吸氢元素,H在V-Ti中的溶解 能低于H在纯V中的溶解能,固溶体中Ti含量减少, 致使氢浓度降低^[11,19-20]。与V比较,Ti、Y对氢的亲和 力更强,均为吸氢元素,可以提高V基合金膜中氢浓度, 但V₈₅Ti₁₀Y₅合金中氢浓度却低于V₉₀Ti₁₀合金中氢浓度 (图4),再结合图1中V₈₅Ti₁₀Y₅合金XRD结果可知, 其更低的氢浓度可能归因于Y₂O₃的存在,Y₂O₃可能包 裹在Y颗粒的外面,形成壳层结构而导致V₈₅Ti₁₀Y₅合 金中氢浓度低于V₉₀Ti₁₀合金中氢浓度。

在 673 K、0.6 MPa 的压力下, V₉₀Ti₁₀、V₈₅Ti₁₀Y₅、 V₈₅Ti₁₀Cu₅ 的吸氢量(H/M)值分别为: 0.691、0.341、 0.331。573 K、0.6 MPa 的压力下, V₉₀Ti₁₀、V₈₅Ti₁₀Y₅、 V₈₅Ti₁₀Cu₅ 的吸氢量(H/M)分别为: 0.745、0.457、0.415。

2.4 氢渗透性能

一般来说,可用 Fick's 定律和 Sieverts 定律来表示 氢通量^[21-22]:

$$J = D \frac{\Delta c}{L} = D \cdot K \frac{P_{\rm u}^{0.5} - P_{\rm d}^{0.5}}{L} = \Phi \frac{P_{\rm u}^{0.5} - P_{\rm d}^{0.5}}{L}$$
(1)

其中, ϕ 为氢渗透率,D为氢扩散系数,K为氢溶解度 系数, Δc 为膜两侧浓度差, P_u 为膜上端压力, P_d 为膜下 端压力,L为膜厚度,J为氢通量。

JL 值受膜上端氢压力、氢扩散和氢溶解影响,而氢的扩散和溶解又深受温度的影响。氢渗透过程中, P_d 是恒定值,为0.1 MPa。图 5 为 $V_{85}Ti_{10}Y_5$ 和 $V_{85}Ti_{10}Cu_5$ 合金膜在 573 和 673 K 时 *JL* 与 P_u 之间的关系。这 2 种合金的 *JL* 值均受温度影响较大,从 673 K 降至 573 K, $V_{85}Ti_{10}Cu_5$ 的 *JL* 值降低了 46%, $V_{85}Ti_{10}Y_5$ 降低了 40%。温度的降低有利于增加吸氢量,却会使扩散速率降低,且对扩散的影响更显著,进而导致 *JL* 值降低。当温度一定

图 5 V₈₅Ti₁₀Y₅和 V₈₅Ti₁₀Cu₅的稳态氢通量

Fig.5 Steady state hydrogen flux of $V_{85}Ti_{10}Y_5$ and $V_{85}Ti_{10}Cu_5$

时, V₈₅Ti₁₀Y₅和 V₈₅Ti₁₀Cu₅ 合金膜的 JL 值随供氢端压力 Pu的增大而增大,此过程中, JL 的增加量逐渐减缓,氢 渗透过程趋于平衡,在图中显示为一条斜率逐渐减小的 平滑曲线。值得注意的是,图 5 中 V₉₀Ti₁₀ 合金的氢通量 数据因氢脆开裂无法获得。

由于 Ti 与 Cu 反应生成金属间化合物,导致 V₈₅Ti₁₀Cu₅ 合金膜中作为主要氢渗透通道的 V 基固溶体相中固溶的 Ti 含量远低于 V₈₅Ti₁₀Y₅ 合金膜。Dolan 等人^[11]的研究表 明: V 中吸氢元素 Ti 的固溶虽然可以提高 V 基合金膜 中吸氢量,却不利于氢扩散,与图 4 和图 6 中的研究结 果一致,导致氢渗透率的降低。并且,其它条件(包括 温度)一定时,纯钛合金的氢渗透率始终小于纯钒合金 的氢渗透率^[23],这也进一步说明了 V 中 Ti 的固溶会使 V 基合金膜氢渗透率降低。因此,当温度和压力一定时, 由于 V₈₅Ti₁₀Cu₅ 合金膜中 V 基固溶体相中 Ti 含量远低于 V₈₅Ti₁₀Y₅ 合金膜的这部分原因而导致前者的 *JL* 值大于 后者的 *JL* 值,见图 5。

在 P_u 为0.6 MPa时, $V_{85}Ti_{10}Y_5$ 和 $V_{85}Ti_{10}Cu_5$ 在673 K 时的 JL 值分别为 63.2×10⁻⁶和 79.9×10⁻⁶ mol H₂ m⁻¹ s⁻¹; 在 573 K时的 JL 值分别为 37.9×10⁻⁶和 42.8×10⁻⁶ mol H₂ m⁻¹ s⁻¹。 根据式(1)可计算出 $V_{85}Ti_{10}Y_5$ 和 $V_{85}Ti_{10}Cu_5$ 合金在 673 K 时的氢渗透率分别为 0.139、0.174(Φ /× 10⁻⁶ mol H₂ m⁻¹ s⁻¹ Pa^{0.5}),在573 K 时的氢渗透率分别 为 0.082、0.093(Φ /×10⁻⁶ mol H₂ m⁻¹ s⁻¹ Pa^{0.5})。与 Pd₇₇Ag₂₃^[24]相比, $V_{85}Ti_{10}Y_5$ 在673 K 的氢渗透率是其5.5 倍, $V_{85}Ti_{10}Cu_5$ 在673 K 的氢渗透率高于目前已报道的几 乎所有 V 基氢分离合金膜,如此高的氢渗透率可部分归 因于大量弥散分布第二相的存在,这避免了非氢渗透通 道的连续相对氢渗透的阻碍作用,具有很大的研究价值。

2.5 氢扩散性能

根据式(1)可得:

$$D = \frac{JL}{\Delta c} \tag{2}$$

式中, Δc 为氢浓度梯度,可根据 PCT 吸氢试验结果计 算出浓度差,再结合氢渗透实验即可求出氢扩散系数 D。

图 6 为铸态 V₈₅Ti₁₀Y₅和 V₈₅Ti₁₀Cu₅ 合金膜在 673 和 573 K 透氢时氢扩散系数。图中横坐标为合金膜上下两 端 H/M 的平均值,可看作透氢时合金膜内的平均氢浓 度,其值越大,氢溶解越多。图中各点代表压力在 0.1~0.6 MPa 时 H/M 对氢扩散系数的影响,对于同一温 度的同一成分合金,(r_u+r_d)/2 的跨度越长,说明合金膜 在压力区间的吸氢量增加越多。观察图中曲线,发现 2 种合金的氢扩散系数随吸氢量的增加而略有增加,这是 因为高浓度梯度影响了氢在晶格中的跳跃。当压力较低

时,氢优先在合金内部低能间隙中溶解,此时合金内部存 在大量低能间隙,氢可在低能间隙中稳定溶解扩散,扩 散不受浓度影响;当压力增加后,合金内的低能间隙逐 渐被氢原子占满,氢进一步占据高能间隙,此时氢浓度 较高,膜上端的高能间隙趋向于饱和但膜下端仍有充足 的低能间隙供跳跃,因此受浓度梯度的影响氢原子加速向 膜下端扩散,表现为扩散系数增大^[25]。对比 673 和 573 K 温度下 2 种合金的扩散系数发现,V₈₅Ti₁₀Y₅和 V₈₅Ti₁₀Cu₅ 合金膜的氢扩散系数随着温度的降低而相应的减小。这 是因为氢原子需要达到一定的扩散激活能为定值,当温 度降低时,氢原子所具有的能量降低,氢原子不易达到 在间隙扩散所需的激活能,因此表现为扩散系数减小。

2.6 抗氢脆性能

采用恒压缓冷法测试铸态 $V_{85}Ti_{10}Y_5 和 V_{85}Ti_{10}Cu_5$ 合 金膜的抗氢脆性能,即在膜的上端保持 0.6 MPa 的氢气 压, 膜的下端为 0.1 MPa, 合金膜降温速率控制在 2 ℃/min,从 673 K 冷却至室温。图 7 为 $V_{85}Ti_{10}Y_5$ 和 $V_{85}Ti_{10}Cu_5$ 合金膜的缓冷曲线,其纵坐标为氢通量 *J*,横 坐标为温度。缓冷试验中合金膜发生氢脆会迅速使膜破 裂,从而表现出尾端流量陡增,合金膜发生破裂的温度越 低说明其抗氢脆性能越好。图 7 中 $V_{85}Ti_{10}Y_5$ 、 $V_{85}Ti_{10}Cu_5$ 合金 膜 初 始 温 度 时 的 氢 通 量 分 别 为 0.1053、 0.1209 mol H_2 m⁻² s⁻¹。温度降低,合金膜的氢通量降 低,当 $V_{85}Ti_{10}Cu_5$ 和 $V_{85}Ti_{10}Cu_5$ 利料 0.1053、 0.1209 mol H_2 m⁻² s⁻¹。温度降低,合金膜的氢通量降 低,当 $V_{85}Ti_{10}Cu_5$ 和 $V_{85}Ti_{10}Y_5$ 合金膜 前,尾端几乎检测不到流量,膜未破裂,继续冷却至室 温,流量仍未陡增,说明 $V_{85}Ti_{10}Cu_5$ 和 $V_{85}Ti_{10}Y_5$ 合金膜 的抗氢脆性能良好。

V 基氢分离合金膜的抗氢脆性能与氢浓度有着密切 关系,降低合金膜中氢浓度有利于提高合金膜的抗氢脆 性能。V₈₅Ti₁₀Cu₅ 合金膜具有良好的抗氢脆性能可归因

于 Ti 与 Cu 反应生成金属间化合物,这降低了 V 基固溶体相中吸氢元素 Ti 的含量,使合金膜中氢浓度降低,且 V 中微量斥氢元素 Cu 的固溶又进一步降低了合金膜中氢浓度,使氢固溶产生的内应力降低,从而提高了合金膜的抗氢脆性能。相对于 V 而言, Ti、Y 对氢的亲和力更强,均为吸氢元素,可提高 V 基合金膜中氢浓度,但 $V_{85}Ti_{10}Y_5$ 合金中氢浓度却低于 $V_{90}Ti_{10}$ 合金中氢浓度(图 4),再结合图 1 中 $V_{85}Ti_{10}Y_5$ 合金 XRD 结果可知,其更低的氢浓度可能归因于 Y_2O_3 的存在, Y_2O_3 可能包裹在 Y 颗粒的外面,形成壳层结构而导致 $V_{85}Ti_{10}Y_5$ 合金中氢浓度低 于 $V_{90}Ti_{10}$ 合金中氢浓度,降低了内应力,从而使其具有良好的抗氢脆性能。

3 结 论

1) 在合金化 5at%Y 和 5at%Cu 后, V₈₅Ti₁₀Cu₅在晶 界和晶内有少量 Cu₂Ti 金属间化合物, V₈₅Ti₁₀Y₅中可能 存在包裹 Y 颗粒的 Y₂O₃的壳层结构均匀分布于晶粒及 晶界。结合 Y₂O₃ 的生成、Cu 元素本身的斥氢作用, V₈₅Ti₁₀Y₅和 V₈₅Ti₁₀Cu₅合金膜的氢溶解度降低,有利于提 高合金膜在氢渗透时的稳定性。V₈₅Ti₁₀Y₅和 V₈₅Ti₁₀Cu₅ 合金膜的氢溶解随着温度的降低而增加,与氢溶解和 反,氢扩散系数随着温度的降低而明显降低,溶解和扩 散都随着压力的增加而增加,氢扩散系数因受氢浓度梯 度的影响而略微增加。

2) 温度相同时,随着合金膜上端压力的增加, $V_{85}Ti_{10}Y_5$ 和 $V_{85}Ti_{10}Cu_5$ 合金膜的氢通量增加。当压力增加到一定 值时,合金膜的氢递逐率基本保持不变。随着温度的降 低,合金膜的氢通量及氢渗透率随之降低。最终计算出 $V_{85}Ti_{10}Y_5$ 和 $V_{85}Ti_{10}Cu_5$ 合金在 673 K 时的氢渗透率 ϕ 分别 为 0.139×10⁶、0.174×10⁶ mol H₂ m⁻¹ s⁻¹ Pa⁰⁵,在 573 K 时的 氢渗透率分别为 0.082×10⁻⁶、0.093×10⁻⁶ mol H₂ m⁻¹ s⁻¹ Pa⁰⁵, 远高于 623 K 下的 Pd₇₇Ag₂₃ 合金膜的氢渗透率。 3) V₈₅Ti₁₀Y₅和 V₈₅Ti₁₀Cu₅ 合金膜的抗氢脆性能相比 V₉₀Ti₁₀均得到显著改善,在 0.5 MPa 压差的缓冷条件下 均未发生开裂现象,表现出良好的抗氢脆性能。

参考文献 References

- [1] He Zexing(何泽兴), Shi Chengxiang(史成香), Chen Zhichao(陈 志超) et al. Chemical Industry and Engineering Progress(化工进 展)[J], 2021, 40(9): 12
- [2] Chen Bin(陈彬), Xie Heping(谢和平), Liu Tao(刘涛) et al. Advanced Engineering Sciences(工程科学与技术)[J], 2022, 54(1):11
- [3] Wang Yiran(王奕然), Zeng Lingzhi(曾令志), Lou Shujie(娄舒洁) at el. Petrochemical Technology & Application(石化技术与应用)[J], 2019, 37(5): 6
- [4] Cheng Y S, Pea M A, Fierro J L et al. Journal of Membrane Science[J], 2002, 204(1): 329
- [5] Cardoso S P, Azenha I S, Lin Z et al. Separation & Purification Reviews[J], 2018, 47(3): 229
- [6] Dolan M D. Journal of Membrane Science[J], 2010, 362(1-2): 12
- [7] Dolan M D, Kellam M E, McLennan K G et al. International Journal of Hydrogen Energy[J], 2013, 38(23): 9794
- [8] Yukawa H, Nambu T, Matsumoto Y. Journal of Alloys and Compounds[J], 2011, 509: S881
- [9] Suzuki A, Yukawa H, Ijiri S et al. Materials Transactions[J], 2015, 56(10): 1688
- [10] Dolan M D, Song G, Liang D et al. Journal of Membrane Science[J], 2011, 373(1-2): 14
- [11] Dolan M D, McLennan K G, Song G et al. Journal of Membrane Science[J], 2013, 446: 405
- [12] Liu W, Yan E, Wang H et al. International Journal of Hydrogen Energy[J], 2021, 46(29): 156 09
- [13] Jiang Peng(江 鹏), Yuan Tongxin(袁同心), Yu Yandong(于彦东). Acta Metallurgica Sinica(金属学报)[J], 2017, 53(4): 433
- [14] Liu D M, Li X, Geng H et al. Journal of Membrane Science[J], 2018, 553: 171
- [15] Senkov O N, Miracle D B. Materials Research Bulletin[J], 2001, 36(12): 2183
- [16] Amano M, Komaki M, Nishimura C. Journal of the Less Common Metals[J], 1991, 172: 727
- [17] 古牧政雄,西村睦,天野宗幸. The Journal of the Japan Institute of Metals and Materials(日本金属学会誌)[J], 1992, 56(6): 729
- [18] Zhang Lianmeng(张联盟), Huang Xuehui(黄学辉), Song Xiaolan(宋晓岚). Fundamentals of Materials Science(材料科学 基础)[M]. Wuhan: Wuhan University of Technology Press,

2008: 22

- [19] Dolan M D, Song G, Liang D et al. Journal of Membrane Science[J], 2011, 373(1-2): 14
- [20] Dolan M D, Song G, McLennan K G et al. Journal of Membrane Science[J], 2012, 415: 320
- [21] Yukawa H, Zhang G X, Watanabe N et al. Journal of Alloys and Compounds[J], 2009, 476: 102
- [22] Dolan M D. Journal of Membrane Science[J], 2010, 362(1-2): 12

- [23] Cardoso S P, Azenha I S, Lin Z et al. Separation & Purification Reviews[J], 2018, 47(3): 229
- [24] Jiang Peng(江 鹏), Huang Huanchao(黄焕超), Song Guangsheng(宋广生) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2020, 49(6): 2182
- [25] Dolan M D, McLennan K G, Way J D et al. The Journal of Physical Chemistry[J], 2011, 116(1): 1512

Microstructure and Hydrogen Separation Properties of V₈₅Ti₁₀Y₅ and V₈₅Ti₁₀Cu₅ Alloys

Yang Bo¹, Meng Ye¹, Tang Bolin¹, Chen Xiu¹, Shi Xiaobin¹, Lu Yu², Gao Heng³, Ren Wei³, Song Guangsheng¹

(1. Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials

Science and Engineering, Anhui University of Technology, Maanshan 243032, China)

(2. School of Mathematics and Physics, Anhui University of Technology, Maanshan 243032, China)

(3. Physics Department, College of Sciences, Shanghai University, Shanghai 200444, China)

Abstract: Hydrogen separation alloys $V_{85}Ti_{10}Y_5$ and $V_{85}Ti_{10}Cu_5$ were prepared by high vacuum non-consumable arc melting furnace. The effects of the addition of Y and Cu elements on the hydrogen permeability, hydrogen solubility and hydrogen brittleness resistance of the alloy were investigated by SEM, TEM, XRD, hydrogen permeability test, PCT hydrogen absorption test and constant pressure slow cooling test. The results show that the as-cast $V_{85}Ti_{10}Y_5$ and $V_{85}Ti_{10}Cu_5$ alloys are both composed of V-matrix and the second phase, but the second phase of the former is dispersively distributed Y-rich particles, while the latter is a Cu-Ti intermetallic compound precipitated in the grain and distributed continuously along the grain boundary. The formation of Y_2O_3 in $V_{85}Ti_{10}Y_5$ alloy and the hydrogen-repulsive action of some solid solution Cu in $V_{85}Ti_{10}Cu_5$ alloys, reduce the internal stress generated by hydrogen solution, and thus improve the anti-hydrogen brittleness. The $V_{85}Ti_{10}Y_5$ and $V_{85}Ti_{10}Cu_5$ alloys show excellent anti-hydrogen embrittlement properties without hydrogen embrittlement during slow cooling. Moreover, the hydrogen permeability at 673 K is 0.139×10^{-6} and 0.174×10^{-6} mol H₂ m⁻¹ s⁻¹ Pa^{0.5}, which is 5.5 and 6.9 times of that of Pd₇₇Ag₂₃, respectively. Compared with commercial palladium alloys, they all show higher permeability.

Key words: hydrogen separation; V-based alloy membrane; V₈₅Ti₁₀Y₅; V₈₅Ti₁₀Cu₅

Corresponding author: Song Guangsheng, Ph. D., Professor, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243032, P. R. China, E-mail: song_ahut@163.com