高磁光性能 Ce_xY_{3-x}Fe₅O₁₂多晶体的制备及磁学性能 研究

栾丽君,徐长艳,张子荞,谢海晨

(长安大学,陕西西安 710064)

摘要:采用优化的溶胶-凝胶法制备了 Ce³⁺掺杂的石榴石型 Ce_xY_{3-x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3; Ce: YIG) 多晶体,优化方案是通过 预烧处理和 900 ~ 1400℃宽温度范围烧结获得无衍生杂质和高磁光性能的晶体。首先用热重分析确定了该晶体的合成温度为 890℃。XRD 结果表明该晶体的晶格常数在 12.37241Å 至 12.4121 Å之间变化,当 Ce>0.2 时出现杂质相 CeO₂。SEM 分析表明 Ce: YIG 的晶粒尺寸随着烧结温度和 Ce³⁺含量的增加而增加,其尺寸分布范围为 0.257 至 6.52 µm,该粒度值是目前获得的 YIG 晶体粒度的最大值。所有 Ce: YIG 样品在室温下呈现亚铁磁性,饱和磁化强度在 23.47 至 28.10 emu/g 范围内变化。经过 1200 ~ 1300℃烧结的 Ce_{0.1}Y_{2.9}Fe₅O₁₂ 晶体的磁导率高达 3.68 ~ 3.90。根据法拉第旋转角与磁导率的关系可知,该温度范围烧结的多 晶体有可能获得最佳的法拉第旋转性能。

关键词:溶胶-凝胶法; 钇铁石榴石; 烧结温度; 磁性能 中图法分类号: TG??? 文献标识码: A 文章编号: 1002-185*X*(2017)0?-0???-0?

稀土铁石榴石 (RIG) 自 1957 年被发现以来,由于 其高居里温度^[1]、高介电常数^[2]、垂直磁各向异性^[3]和化 学稳定性,已在光纤通信^[4]、国防工业^[5]、航空航天和生 物医学^[6]等领域得到广泛应用。作为 RIG 家族的一员, 钇铁石榴石已成为制作非互易器件^[7-9]的热门材料,如磁 光隔离器^[4,10,11]、谐振器^[12,13]、磁光传感器^[14,15]、磁光学 开关^[16]和可调谐滤波器^{[17,18}]等,这些器件的工作原理皆 源于 YIG 巨大的法拉第效应^[19]。随着 5G 时代的到来, 适用于通信频带中非互易设备的 YIG 单晶芯片引起了 广泛的研究兴趣^[20]。目前制备单晶体使用的方法包括熔 盐法^[21]、光学浮区法^[14,22]和液相外延法^[23,24]。然而,由 于 YIG 单晶的非一致熔融性,其晶体生长变得极其困难。 为了满足目前国际形势下国产替代的需要,透明 YIG 陶 瓷^[25,26]、YIG 薄膜^[3,27-29]和陶瓷粉体材料^[30-32]已竞相被研 究。

除了巨法拉第效应外,出色的磁性如高饱和磁化强度^[33,34]、窄铁磁共振线宽^[35]和高法拉第转角也为 YIG 多晶粉体在微波领域内的应用提供了可能,其丰富的磁性 来源于钇铁石榴石巧妙的晶体结构。YIG 的分子式为 Y₃Fe₅O₁₂,属于立方晶系,每个单位晶胞内含八个 Y₃Fe₅O₁₂分子。YIG 的晶体结构由氧多面体围绕着阳离 子组成,分别形成三个亚晶格:四面体 d 位置由三个铁 离子占据、八面体 a 位置和十二面体 c 位置分别由两个 铁离子和三个钇离子占据。其中 a 位和 d 位上的铁离子 磁矩通过超交换相互作用抵消,剩余 d 位的铁离子提供 了 YIG 的磁性^[36]。因此当用不同元素掺杂 YIG 可显著 改变其磁性。例如,掺杂钴会导致 YIG 纳米颗粒的饱和 磁化强度降低^[37]; Sm³⁺掺杂的 YIG 引起晶格畸变,导致 其饱和磁化强度降低^[38]; Sn 取代导致居里温度降低,饱 和磁化强度略有增加^[39]。

目前制备 YIG 晶体的方法包括溶胶-凝胶法^[6,40,41]、 化学共沉淀法^[42]、固态法^[43,44]、溶液燃烧法^[45]、水热法 [46]和微乳液法[47]。其中,溶胶-凝胶法因其成本低、简单 以及能够在相对较低的温度下合成单相 YIG 而备受关 注。无论使用何种合成方法, YIG 晶相合成都需要较高 的温度(800~1400℃)。Aleksandr Spivakov 等人^[48]使用 溶胶-凝胶法在 650~800℃的空气气氛中对 Bi:YIG 纳米 颗粒进行退火,发现随着退火温度的升高,晶粒尺寸增 加到 44.5 nm, 并伴随着磁畴的转变。尽管合成 Ce: YIG 的技术相对成熟,但 Ce 在 YIG 陶瓷中的溶解度低,导 致相关性能受到影响。为此研究人员相继开发出 Eu 掺 杂^[29]以及热循环^[49]等提高 Ce 的固溶度的方法。各种方 法合成的Ce: YIG 陶瓷中Ce 亦展现出不同的溶解度极限。 其中,溶胶凝胶法合成 Ce: YIG 薄膜的 Ce 含量最大可达 到 0.25^[50]; 固相法合成 Ce: YIG 颗粒的溶解度极限为 $0.1^{[51]}$

根据实践经验,我们发现传统溶胶-凝胶法虽然可以 在较低的温度下合成 YIG 多晶体,但获得的 YIG 多晶 体不仅含有 YFeO₃ (YIP) 、赤铁矿、CeO₂等杂质相,而 且较低的烧结温度下晶粒生长不完全导致晶体质量也很

基金项目:国家重点研发计划"政府间国家科技创新合作"重点专项项目(批准号:2023YFE0108500)和中央高校基本科研业务费专项 (编号:300102312401)

作者简介: 栾丽君, 女, 1976年生, 博士, 副教授, 长安大学材料科学工程学院, 陕西西安 710064, 电话: 13309278863, E-mail: nmllj050@chd.edu.cn

低^[52,53]。同时,固相烧结法也存在原料均匀性和分散性 差的问题,导致性能较差^[54],因此我们拟通过优化传统 溶胶-凝胶法的烧结工艺来制备可应用于微波器件的高 磁光性能 Ce: YIG 粉末多晶体。优化方案是通过预烧处 理和 900 ~ 1400℃的宽温度范围烧结获得无衍生杂质和 高磁光性能的晶体。本文系统地研究了 Ce 掺杂和烧结 温度对 Ce: YIG 晶体结构、烧结过程、磁性能和法拉第 效应的影响。

1 实验

采用分析纯 Y (NO₃) $_{3}$ ·6H₂O, Fe (NO₃) $_{3}$ ·9H₂O 和 Ce (NO₃) $_{3}$ ·6H₂O 作为溶胶-凝胶法制备 Ce_xY_{3-x}Fe₅O₁₂(x=0, 0.1, 0.2, 0.3)多晶粉体的原料。按照化学计量比称量原料 并溶解在 120ml 去离子水中,滴入少量乙二醇不断搅拌 至充分溶解,然后加入 1M C₆H₈O₇·H₂O 作为络合剂并搅 拌均匀,合成暗红色的前驱体溶液。溶液的 PH 值是成 功制备凝胶的关键,在前驱体溶液中逐滴加入氨水使其 PH 值为 2^[55],此时溶液变为浅黄绿色。将混合溶液在 80℃下水浴加热 6 ~ 10h 使其缓慢蒸发获得湿凝胶。湿 凝胶在 110℃下干燥 36h 得到疏松多孔的干凝胶,研磨 30min 后得到原粉。最后,将原粉先在 450℃预烧 1 小 时 后 分 别 在 900 ~ 1400℃下烧 结 6 小时得到 Ce_xY_{3-x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3) 多晶体。

通过 TGA/DSC (TA DSC/TGA Discovery SDT 650) 确定 Ce_xY_{3-x}Fe₅O₁₂ 原粉在不同加热阶段的热分解温度及 立 方 石 榴 石 相 的 形 成 温 度 。 用 X 射 线 衍 射 (AXS D8ADVANCE)分析 Ce_xY_{3-x}Fe₅O₁₂样品的晶体结构。 再用扫描电子显微镜 (ZEISS Sigma 300)分析样品的形 貌特 征 及 晶粒 尺 寸 。 使用 振 动 样 品 磁 强 计 (美国 LakeShore 公司 7404 型)获得样品在常温下的磁滞回线, 重点研究样品的饱和磁化强度随烧结温度的变化关系。

2 结果与讨论

2.1 TG-DSC 法确定 YIG 的合成工艺

图 1 所示为溶胶-凝胶法制备 YIG 晶体的 TG-DSC 曲线。从 TG 曲线上可以看出温度低于 180℃之前失重 率约为 7%,对应于 DSC 曲线上 100.82℃处的吸热峰和 172.24℃的放热峰,分别为湿凝胶脱水及氨基消去。随 着温度升高到 582℃,失重持续增加到 74.04%,该过程 为凝胶中氢氧化物、柠檬酸等有机物分解。柠檬酸的分 解温度为 350℃左右^[56],对应于 DSC 曲线上 383℃的放 热峰。因此,在正式退火之前,应先选择合适的温度预 烧处理,从而抑制杂质相的形成,根据 TG-DSC 数据和 文献数据,最终确定在 450℃下预烧 1h。当温度高于 582℃ 以后,TG 曲线略微下降,后趋于平稳,该趋势对应于 有机物的进一步分解。在 795.16℃处出现一个放热峰, 代表着有序相复合氧化物 YFeO₃ (YIP)在此温度下开始 结晶。871℃处的放热峰可能代表着立方 YIG 相的形成。 失重持续到约 890℃,高于 890℃以后没有任何失重,表 明采用溶胶-凝胶法制备 Ce: YIG 晶体的最低烧结温度为 890℃。传统溶胶-凝胶法在 900 ~ 1100℃的烧结温度范 围合成的 YIG 晶体质量不高,本文选定 900 ~ 1400℃作 为 YIG 的烧结温度范围。蕌

图 1 溶胶-凝胶法制备 YIG 原粉的 TG-DSC 曲线。该曲线是在空气 气氛中以 10℃/min 的加热速率从室温升温到 1000℃进行测量的 Fig.1 TG-DSC curve of YIG raw powder prepared by sol-gel method. The curve was measured in air atmosphere at a heating rate of 10℃/min from room temperature to 1000 ℃

2.2 单相 YIG 的 XRD 分析

2.2.1 烧结温度对晶体结构的影响

为了探究预烧在烧结过程中是否必要,我们测试了 未经预烧在 900℃下直接烧结的样品和 450℃预烧后再 烧结的样品的 XRD 衍射数据,结果如图 2 所示。从图 中可以看出,未经预烧样品的主晶相为 YFeO₃ (YIP), 同时含有少量 Fe₂O₃,而经 450℃预烧后烧结的试样仅显 示为 YIG 相。因此,在正式烧结之前的预烧结过程是获 得纯 YIG 的关键步骤。

在 900 ~ 1400℃下烧结 6h 的 Ce_xY_{3-x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3) 晶体的 XRD 图谱如图 3 所示。所有样品都表现 出结晶相,并形成了石榴石结构,其衍射峰与 Y₃Fe₅O₁₂ 的标准 衍射 卡片 (PDF # 43-0507) 非常匹配。 Ce_xY_{3-x}Fe₅O₁₂ (x= 0, 0.1, 0.2, 0.3) 样品各晶面的衍射峰 强度随烧结温度的升高而增大,其半峰宽度随烧结温度 升高而变窄,表明 Ce_xY_{3-x}Fe₅O₁₂ 的晶粒尺寸增大,同时 结晶度增大。如图 3 (c) 和 (d) 所示,由于 Ce 在 YIG 中的溶解度有限^[50],随着 Ce 浓度的升高,样品中开始 出现 CeO₂第二相,分别对应于 x 等于 0.2 和 0.3。同时, 随着烧结温度的升高,检测到的 CeO_2 含量变小,表明 高温烧结可使 Ce^{3+} 更多的溶解到 YIG 中。

图 2 900 ℃下未预烧样品和 450 ℃预烧样品的 XRD 衍射图。未 预烧样品的主晶相为 YFeO₃ (YIP) 相,而预烧样品则为 YIG 相 Fig.2 XRD diffraction patterns of pre-fired samples at 900 ℃ and pre-fired samples at 450 ℃. The main crystal phase of the unburned sample is YFeO₃ (YIP) phase, while the pre-fired sample is YIG phase

图 3 Ce_xY_{3-x}Fe₅O₁₂ (x= 0, 0.1, 0.2, 0.3)在 900 ~ 1400 ℃烧结时的 XRD 衍射图: (a)x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3。所有衍射 峰与 PDF# 43-0507 的标准衍射峰匹配良好,当x大于 0.2 时,出 现 CeO₂峰

Fig.3 XRD diffraction patterns of $Ce_x Y_{3-x}Fe_5O_{12}$ (*x*=0, 0.1, 0.2, 0.3) sintered at 900-1400 °C: (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3. All diffraction peaks match well with the standard diffraction peaks of PDF # 43-0507. When *x* is greater than 0.2, a CeO₂ peak appears

2. 2. 2Ce 含量对晶体结构的影响

为了确定 Ce 含量对晶体结构的影响,我们选择了 比较合适的烧结温度 1300℃的 Ce_xY_{3-x}Fe₅O₁₂ (*x*=0, 0.1, 0.2, 0.3)的 XRD 图谱进行精修,结果如图 4 所示,将图 4 中(420)峰局部放大得到图 5 。如图 5 所示,随着 Ce 含量的增加,主峰位置略微向左移动,这是因为 Ce³⁺的 离子半径(1.01Å) 大于 Y³⁺(0.9Å)。根据布拉格方程 $\lambda = 2d \sin \theta$,当 d 增大时,衍射角减小。

图 4 1300 ℃烧结的 Ce_xY_{3-x}Fe₅O₁₂ 晶体的精修 XRD 图谱 Fig.4 The refinedXRD patterns of Ce_xY_{3-x}Fe₅O₁₂crystal sintered at 1300℃

衍射峰位随 x 值的增大而左移表明 Ce³⁺成功取代 Y³⁺进入了 YIG 晶格,形成石榴石结构^[27]。为了进一步 分析 Ce³⁺含量对晶格常数的影响,我们根据上述 XRD 结果获得了 Ce_xY_{3-x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3) 的晶格参数

列于表 1。如表 1 数据所示,在相同的烧结温度下, Ce_xY_{3-x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3) 的晶格常数随着 Ce 含 量的增加而增加,这归因于大半径离子 Ce³⁺的成功掺杂。 实验中任一掺杂浓度的Ce_xY_{3-x}Fe₅O₁₂晶体的晶格常数都 随着烧结温度的升高而降低 (如图 6 (a) 所示)。原因是 随着烧结温度提高, 晶粒尺寸增大, 从而导致晶格参数 变小。P.Vaqueiro 等人^[56]的研究结果证实了这一点,他 们研究了在不同的烧结温度 (800 ~ 900℃) 下获得的 YIG 的平均粒径和晶格常数之间的关系,发现平均粒径 越大, 晶格常数越小。这种晶格收缩源于相对大尺寸晶 粒中的晶粒表面排斥偶极相互作用的减少^[57]。图 6 (b) 显示了基于 XRD 精修数据的 Ce_xY_{3-x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3) 中结晶各相含量与烧结温度之间的关系。可以看出, 随着温度的升高,更多的 Ce³⁺固溶于 YIG 中,形成 Ce_xY_{3-x}Fe₅O₁₂ 晶相,而第二相的含量却相应地降低。这 也证实了高温烧结对 Ce3+在 YIG 中的固溶性的贡献。

表 1 通过 XRD 数据精修的 900 ~ 1400℃下烧结的 Ce_xY_{3-x}Fe₅O₁₂(x = 0, 0.1, 0.2, 0.3)样品的晶格常数(Å)

Table 1Lattice constants (Å) of Ce_xY_{3x}Fe₅O₁₂ (x=0, 0.1, 0.2,0.3) samples sintered at 900-1400 ℃ using XRD

	data refinement				
$T(^{\circ}C)$	0	0.1	0.2	0.3	
900	12.38925	12.39591	12.40606	12.4121	
1000	12.38341	12.38938	12.39964	12.4098	
1100	12.383	12.38796	12.39964	12.4098	
1200	12.38121	12.38427	12.39524	12.40968	
1300	12.37731	12.38465	12.39383	12.4079	
1400	12.37241	12.3836	12.39273	12.40447	

图 6 (a)不同 Ce 含量下 Ce_xY_{3-x}Fe₅O₁₂的晶格常数随烧结温度的变 化; (b) Ce_xY_{3-x}Fe₅O₁₂中 YIG 和 CeO₂含量与烧结温度的关系 Fig.6(a) Changes in lattice constants of Ce_xY_{3-x}Fe₅O₁₂ with sintering temperature under different Ce contents; (b) The relationship between YIG and CeO₂content and sintering temperature in $Ce_xY_{3-x}Fe_5O_{12}$

2.3 SEM 表面形貌和烧结过程分析

为了研究 CexY3-xFe5O12 (x=0, 0.1, 0.2, 0.3)样品在不 同烧结条件下的形貌,对样品进行了扫描电子显微镜 (SEM) 分析。图 7 显示了在 900~1400℃下烧结 6 小时 的 Ce_xY_{3-x}Fe₅O₁₂(x=0, 0.1, 0.2, 0.3) 样品的微观形貌。根 据 SEM 图像,所有样品都表现出与 XRD 结果一致的多 晶形态,证实了通过溶胶凝胶法成功合成了 Ce_xY_{3x}Fe₅O₁₂ 多晶体。统计 Cex Y3-xFe5O12 (x=0, 0.1, 0.2, 0.3) 在不同烧结 温度下的平均晶粒尺寸列于表2,其平均粒度分布在0.257 至 6.52µm 范围内,且晶粒尺寸随着烧结温度增加而增大, 在如表 2 所示的任一烧结温度下,随着越来越多的 Ce³⁺ 进入 YIG 晶格, Ce_xY_{3-x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3) 的晶粒 尺寸逐渐增大,这与 XRD 粒度分析结果一致。与固相法 和传统溶胶-凝胶法相比,优化的溶胶-凝胶法工艺获得的 晶粒尺寸大于传统固相法 (最大晶粒尺寸为 5µm^[58]) 和 普通溶胶-凝胶法 (晶粒尺寸为 1.36µm^[59]) ,本工作获得 的粒度值是目前获得的 YIG 晶体粒径的最大值。随着烧 结温度的持续升高,晶粒从柱状晶转变为等轴晶粒。

值得注意的是,在掺杂过程中,除了 YIG 晶粒生长 外,还出现了第二相。当 x=0.1时,观察到 CeO₂ 第二相 附着在 Ce_xY_{3-x}Fe₅O₁₂ 晶界处,这也反映在图 7 中。但 Ce_{0.1}Y_{2.9}Fe₅O₁₂中的杂质相仅存在于 900 ~ 1200℃的烧结 过程中。超过 1300℃后,Ce³⁺完全固溶到 YIG 晶格中, 形成单相 Ce_{0.1}Y_{2.9}Fe₅O₁₂。当 x 为 0.2 和 0.3 时,实验中的 任一烧结温度下都观察到了 CeO₂ 杂质相,因此用溶胶-凝胶法制备 Ce: YIG 时,Ce 的固溶极限小于 0.2。

为了研究不同烧结温度下晶体的生长和扩散,我们 使用 Cobel 理论^[60]的 Arrhenius 方程^[61]来预测晶体生长 的活化能:

$$lg D = \left(\frac{-Q}{2\,303\,\mathrm{R}}\right)\frac{1}{T} + A \qquad (1)$$

式中, D 为晶粒度; Q 是晶体生长的活化能(kJ/mol); R 是理想气体常数,其值为 8.314 J/mol; T 是绝对温度 (K); A 是常数。根据上述公式绘制 Ce_xY_{3-x}Fe₅O₁₂ 的 *lgD-1/T* 曲线,如图 8 所示,通过曲线可以计算烧结的活 化能。

图 7Ce_xY_{3*}Fe₅O₁₂(*x*=0,0.1,0.2,0.3)在 900 ~ 1400℃下烧结 6 小时的 SEM 图像。在烧结过程的早期阶段 (900 ~ 1000℃),形成烧结的 颈部;在烧结过程的中期阶段 (1100 ~ 1200℃),形成了柱状晶体; 在烧结过程的最后阶段 (1300 ~ 1400℃),形成了等轴晶;烧结温 度为 1200 ~ 1300℃时,最佳晶粒形态出现。图中水平方向的每一 行具有同一烧结温度,从 900 ~ 1400℃;竖直方向的每一列具有 同一 Ce 含量 *x*,为 0 ~ 0.3 Fig. 7SEM images of Ce_xY_{3-x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3) sintered at
900-1400 °C for 6 hours. In the early stages of the sintering process
(900-1000 °C), a sintered neck is formed; In the middle stage of the sintering process (1100-1200 °C), columnar crystals are formed; In the final stage of the sintering process (1300-1400 °C), equiaxed crystals are formed; When the sintering temperature is between
1200-1300 °C, the optimal grain morphology appears. Each row in the horizontal direction in the figure has the same sintering

temperature, ranging from 900 to 1400 $^{\circ}$ C; Each vertical column has the same Ce content *x*, ranging from 0 to 0.3

表 2 900 ~ 1400℃烧结的 Ce_xY_{3-x}Fe₅O₁₂ (x = 0, 0.1, 0.2, 0.3)晶体的 平均晶粒尺寸(μm)

Table 2Average grain size (μ m) of Ce_xY_{3-x}Fe₅O₁₂ (x = 0, 0.1, 0.2,

0.3) crystal sintered at 900-1400 C					
$\begin{array}{c} Ce(x) \\ T(^{\circ}C) \end{array}$	0	0.1	0.2	0.3	
900	0.257	0.27	0.297	0.314	
1000	0.268	0.281	0.312	0.434	
1100	0.311	0.485	0.61	0.75	
1200	0.435	0.99	1.05	1.11	
1300	0.902	1.95	2.02	2.36	
1400	1.64	2.84	4.42	6.52	

Fig.8 The relationship between LgD and 1/T fitted according to formula (1) under three sintering process conditions. For different x values, two low temperature data determine one fitting line, and two medium temperature data and two high temperature data determine the other two fitting lines, respectively

基于上述拟合结果,计算出 Ce_xY_{3-x}Fe₅O₁₂ (*x*=0, 0.1, 0.2, 0.3) 在各个阶段的活化能并列于表 3。晶粒生长经 历三个阶段:第一阶段是生长早期 (对应相对较低的烧 结温度),第二阶段是生长中期 (中温),而第三阶段 (高 温) 是生长后期。从第一阶段到第三阶段,所有样品的 活化能显著增加。在晶粒生长的初始阶段,起始粉末达 到纳米尺寸 (257~311nm)。这些纳米颗粒具有更大的表 面积来刺激晶粒生长,因此活化能较低^[62]。该阶段 Ce: YIG 的主要扩散方式是表面扩散,其中纳米颗粒相互接 触形成颈部连接,原子沿着表面扩散到颈部区域。在生 长中期,晶粒和颈部继续生长,但表面原子的扩散逐渐 转变为晶界扩散,晶界的移动需要更多的能量,从而活 化能进一步增加。在生长的最后阶段,晶界扩散开始转 变为体扩散,并伴随着晶粒的连续生长,从而导致更高 的活化能。整个烧结过程中,原子扩散从早期的表面扩 散过渡到中期的晶界扩散,在生长的最后阶段过渡到体 扩散,其中体扩散过程晶粒生长最快。

表 3 Ce_xY_{3-x}Fe₅O₁₂ (x = 0, 0.1, 0.2, 0.3)在不同烧结过程中的活化能 值(kJ/mol)

Table 3Activation energy values (kJ/mol) of $Ce_x Y_{3-x}Fe_5O_{12}$ (x = 0.01.02.03) in the different sintering processes

0, 0.1, 0.2, 0.3) in the unrerent sintering processes					
	Ce (x) Steps	0	0.1	0.2	0.3
X	-1	13.24	5.74	6.70	63.11
	2	55.53	94.57	91.77	71.18
	3	138.10	109.38	149.35	184.05

2.4 磁学性能和法拉第旋转分析

2.4.1 烧结温度和 Ce 浓度对磁学性能的影响

磁学性能分析是研究 Ce, Y3, Fe, O12 晶体磁光性能的 必要手段,实验测试了900~1400℃烧结的Ce_xY_{3-x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3) 样品的磁滞回线,结果如图 9 所示, 所有样品在室温下均表现出亚铁磁性。纯 YIG 在 900 ~ 1400℃烧结后的饱和磁化强度 (M,) 分别为 26.17, 26.65, 27.75, 27.51, 28.10 和 26.96 emu/g。随着结晶度的进一 步提高和晶粒尺寸的不断增加,比表面积越小,可以推 测非磁性表面层^[63]难以形成,使 M。值增加,但实验结 果并非如此。这是由于烧结温度高于 1200℃的烧结过程 中引入的氧空位抑制了磁矩之间的超交换作用,导致 *M*_s降低。因此,1400℃烧结的*M*_s值低于1100~1300℃, 但高于 900℃。图 9 (b) 显示,当温度超过 1000℃时, Ce0.1Y2.9Fe5O12的 M,开始下降,然后上升,表明在 1100 ~1200℃范围内氧空位的影响占主导地位。图9(c)显示, 当 x=0.2 时,在 1200℃烧结的 Ce_{0.2}Y_{2.8}Fe₅O₁₂的 M_s值达 到最大值 27.77 emu/g, 而在 1400℃烧结的 M。值却低于 900℃时的值, 仅为 25.87 emu/g, 这意味着在 1300~1400℃ 时氧空位的影响远大于结晶度的影响。图 9(d) 显示, Ce0.3Y2.7Fe5O12 晶体在 900 ~ 1400℃烧结的 M, 分别为 23.47, 24.61, 23.83, 26.74, 24.99 和 27.27 emu/g, 在 1100℃和1300℃时的轻微下降也归因于氧空位的影响。

合的 M-H 图。其中直线的斜率表示初始磁化率(x)

Fig.9 Hysteresis loop of $\text{Ce}_x \text{Y}_{3-x} \text{Fe}_5 \text{O}_{12}$ (x = 0, 0.1, 0.2, 0.3) crystal sintered at 900-1400 °C for 6 hours: (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3. The upper left corner of the figure shows theM-H plot fitted according formula $\chi = M/H$ within the initial magnetization range of 0-250 Oe. The slope of the straight line represents the initial magnetic susceptibility (χ_0)

毫无疑问, Ce 掺杂对 YIG 的 M_s 也有一定的影响。 Ce_xY_{3-x}Fe₅O₁₂ (*x*=0, 0.1, 0.2, 0.3) 在 900℃烧结时的 M_s 分 别为 26.17, 26.03, 26.33 和 23.47 emu/g。根据理论分析, 纯 YIG 中 Fe³⁺在 a 和 d 位置的磁矩是反平行排列。而 Y³⁺在 c 位置的磁矩为零。当非零磁矩稀土离子进入 c 位 时, c 位置的磁矩将与 a 和 d 的磁矩的矢量和反平行, 因此 YIG 的总净磁矩由公式(2)^[64]确定:

$$M_s = M_c - |M_d - M_a| \tag{2}$$

式中, M_s 为 YIG 的总净磁矩; M_c , M_d 和 M_a 对应于 YIG 中的 c、a和 d 位点的磁矩。当 Ce³⁺ (1µ_B) 取代 Y³⁺并 进入 c 位置,将形成更多的磁矩与耦合磁矩 $|M_d - M_a|$ 反 平行,这导致 M_s 值降低。因此, M_s 随着 Ce 掺杂量的增 加而减少。然而,当 x=0.2时, M_s 值略有增加,作为一 种离子晶体,YIG 中的金属阳离子之间被更大半径的氧 离子隔开从而距离较远,因此其磁性主要来自不同亚晶 格与氧离子之间的超交换相互作用。而高 Ce (x 超过 0.2) 将增强由氧离子介导的 Fe³⁺之间的超交换相互作用^[65], 从而增加 M_s 值。总之,由于 Ce³⁺既可以降低 YIG 的净 磁矩,又可以增强 YIG 的超交换效应,因此在特定的烧 结温度下, M_s 不存在随 x 变化的特定变化规律。

图 9 的左上角显示了在 0 ~ 250 Oe 初始磁化范围内 根据公式 $\chi=M/H$ 拟合的 *M*-H 图,其中直线的斜率为初 始磁化率 (χ_0)的值。每个样品的饱和磁化强度 (M_s)、 剩余磁化强度 (M_r)、矫顽力 (H_c)、 M_r/M_s 和基于初始 磁化率 (χ_0)以及公式: $\mu_0=\chi_0+1$ 求得的 0 ~ 250 Oe 初始 磁导率 (μ_0)值在表 4 中列出。

尽管 Ce_xY_{3-x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3) 晶体的µ₀ 值存 在局部波动,但它们都随着烧结温度的升高而增加。值 得注意的是,1200 ~ 1400℃烧结的 Ce_{0.1}Y_{2.9}Fe₅O₁₂的μ₀ 值都相对更高。对此,我们推测适量的 Ce 掺杂可以提 高 YIG 的μ₀值,但当 Ce 含量超过一定限度 (约 0.2) 时 μ₀值没有显著增加,可能是由于高 Ce 掺杂下 CeO₂杂质 相的存在导致。

表 4900-1400[°]C 烧结 Ce_xY_{3-x}Fe₅O₁₂(x=0, 0.1, 0.2, 0.3) 的室温饱和磁 化强度 (M_s)、残余磁化强度 (M_r)、矫顽力 (H_c)、 $\frac{M_r}{M_s}$ 和初始磁 导率 (μ_0)

Table 4 Room temperature saturation magnetization (M_s), residual magnetization (M_r), coercive force (H_c), $\frac{M_r}{M_s}$, and initial permeability

doped level (x)	Sintering Temperature (℃)	M _s (emu/g)	M _r (emu/g)	$\frac{M_r}{M_s}$	H _c (Oe)	μ_0
	900	26.17	7.03	0.27	37.92	2.76
0	1000	26.65	6.73	0.25	29.79	2.72
	1100	27.75	5.46	0.20	25.42	3.00
0	1200	27.51	5.27	0.19	23.43	3.02
	1300	28.10	2.53	0.09	11.73	3.53
	1400	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.81	3.79		
	900	26.03	5.96	0.23	40.24	3.30
	1000	27.84	5.87	0.21	34.49	3.41
0.1	1100	27.64	4.76	0.17	28.49	3.45
0.1	1200	26.41	2.00	0.08	12.06	3.68
	1300	27.35	1.16	0.04	6.90	3.90
	1400	27.75	0.67	0.02	4.24	3.85
	900	26.33	8.22	0.31	48.58	3.18
	1000	26.37	6.37	0.24	35.30	2.99
0.2	1100	26.23	4.62	0.18	24.92	3.27
0.2	1200	27.77	2.65	0.10	14.92	3.69
	1300	26.31	1.53	0.06	8.26	3.56
	1400	25.87	0.94	0.04	5.08	3.37
0.2	900	23.47	6.16	0.26	37.09	2.80
	1000	24.61	5.57	0.23	33.40	2.92
	1100	23.83	4.44	0.19	25.61	3.06
0.5	1200	26.74	2.79	0.10	16.14	3.57
	1300	24.99	2.09	0.08	9.70	3.26
	1400	27.27	0.53	0.02	5.10	4.55

通常, 矫顽力 (*H_c*) 值用于表示材料易于被磁化的 程度。根据表 4 中 *H_c*的结果, 在任一 Ce 掺杂量 *x* 下, Ce_xY_{3-x}Fe₅O₁₂ (*x*=0, 0.1, 0.2, 0.3) 的 *H_c*随着烧结温度的 升高而持续降低。在 900℃时, 矫顽力首先从 37.92 Oe 增加到 48.58 Oe, 平均晶粒尺寸相应地从 257 nm 增加到 297 nm。然而,随着晶粒尺寸进一步增加到 314nm, 矫 顽力降低到 37.09Oe。磁性陶瓷颗粒的矫顽力与其尺寸 密切相关, 这是由于材料结构从单畴区域向多畴区域转 变^[66]。由此推断, 900℃烧结的 Ce_{0.2}Y_{2.8}Fe₅O₁₂ 从单畴过 渡到多畴的临界尺寸为 297nm。单畴和多畴区域中矫顽 力的尺寸依赖性可以通过以下方程^[67]近似表达:

$$H_c = g - \frac{h}{D^2} \ (\mathring{P} \not{P} \boxtimes \not{D})$$
(3)

$$H_c = a + \frac{b}{p} (3 \, \text{sm} \, \Sigma \, \text{sm}) \tag{4}$$

式中 g, h, a, b 都是常数。在 1000~1100℃时, H_c 值 随 Ce 含量的变化与 900℃时相似。因此, Ce_{0.2}Y_{2.8}Fe₅O₁₂ 在 1000℃烧结时的临界尺寸为 312nm,在 1100℃烧结的 Ce_{0.1}Y_{2.9}Fe₅O₁₂ 的临界尺寸为 485nm。对 1200~1400℃, H_c 值总体上随着 x 的增加而降低,表明当烧结温度超过 1200℃时, Ce_xY_{3.x}Fe₅O₁₂ (x=0, 0.1, 0.2, 0.3) 表现出多畴 结构。 H_c 在 x = 0.3 处的轻微增加可能是由于在高 Ce 掺 杂下在晶界处形成 CeO₂ 的钉扎位点,使得磁畴难以转 动增加了 H_c 。

从上面的 SEM 分析可知,当温度为 1200 ~ 1300 ℃ 时, Ce_xY_{3-x}Fe₅O₁₂ 晶粒形貌从非均匀柱状晶粒转变为等 轴晶粒,晶粒形貌接近完美。这导致晶粒形状各向异性、 退磁能力和内应力逐渐降低,从而 H_c值降低。晶粒形状 的各向异性也可以通过矩形因子^{M_r[68]}的值来表征,如表 4 所示 Ce_xY_{3-x}Fe₅O₁₂ (*x*=0, 0.1, 0.2, 0.3) 的^{M_r}/_{M_s}值随着烧结 温度的升高而逐渐减小,表明晶粒的各向异性随着烧结

相 较 于 传 统 溶 胶 - 凝 胶 法 ,本 文 所 制 备 的 $Ce_{0.1}Y_{2.9}Fe_5O_{12}$ 的 μ_0 值达到 3.68 ~ 3.90,远高于普通的溶 胶-凝胶法为 1.9555^[69]。通过优化的溶胶-凝胶法制备的 YIG 晶体的饱和磁化强度、矫顽力和初始磁导率都表现 出一定的优势。

2.4.2 烧结温度和 Ce 浓度对法拉第旋转的影响

YIG 作为一种在通信频带中具有巨大法拉第旋转特性的铁氧体材料,其法拉第旋转性能备受关注。重要的是,Ce³⁺掺杂引起的增强的超交换效应可以增强 Ce³⁺和Fe³⁺激发态轨道之间的耦合,导致自旋轨道分裂增加和介电常数张量中非对称分量增加,磁光法拉第旋转角可以用下式^[64]表示:

(5)

$$\Theta_{\rm F} = \frac{-\omega}{2c} \sqrt{\frac{\mu}{\varepsilon_0}} \varepsilon_1 Z$$

温度升高而逐渐降低。

其中 θ_r 是法拉第角; ω 为圆偏振光角频率; c 是光速; μ 是材料的磁导率; ε_0 是自由空间的介电常数; Z 是圆偏 振光穿过材料的距离; ε_1 是材料的介电常数张量的非对 称分量。本文优化的溶胶凝胶法、传统溶胶凝胶法和固 相烧结法获得的 μ_0 值统计于表 5 中,可以看出本文在 1200~1300 ℃烧结的 Ce_{0.1}Y_{2.9}Fe₅O₁₂ 晶体获得了较高的 μ_0 值。综合节能和工艺可行性考虑,采用溶胶凝胶法在 1200~1300℃烧结更有可能使 Ce_{0.1}Y_{2.9}Fe₅O₁₂ 晶体实现 更高的法拉第旋转。因此,基于该优化烧结工艺的多晶 Ce:YIG 粉体材料有望用于微波频段器件,如隔离器、环 形器和移相器等。

表 5 优化的溶胶凝胶法、传统溶胶凝胶法和固相法制备 Ce_xY_{3-x}Fe₅O₁₂的磁学参数

Table 5 Optimization of magnetic parameters of Ce_xY_{3,x}Fe₅O₁₂ prepared by sol-gel method, traditional sol-gel method and solid

phase method					
Method	M_s (emu/g)	H_c (Oe)	μ_0	Reference	
Optimized sol gel method	28.10	5.81	3.79	This work	
Traditional sol gel method	12.71	294.31	1.9555	69	
Solid State Method	24.33	33.816	-	51	

3 结论

采用优化的溶胶-凝胶法在 900 ~ 1400℃条件下成功 制备了 Ce_xY_{3-x}Fe₅O₁₂ (*x*=0, 0.1, 0.2, 0.3) 磁光晶体。研究 了 Ce 掺杂和烧结温度对晶体结构和磁学性能的影响。 TG-DSC 分析表明了预烧的必要性以及合成 Ce: YIG 的 最低温度为 890℃。XRD 结果表明在 900 ~ 1400℃范围 内,随着烧结温度的升高,晶粒逐渐趋于等轴晶,晶格 常数相应地逐渐降低。高 Ce 掺杂下 (*x* 约为 0.2) 出现 CeO₂ 杂质相,且随 Ce 的掺入 YIG 晶格开始膨胀。SEM 分析表明,提高 Ce 浓度和烧结温度都会导致平均晶粒 尺寸增加。所有晶体在室温下均表现出亚铁磁性,随着 晶粒结构的优化,Ce_xY_{3-x}Fe₅O₁₂ 的矫顽力 H_c 随着烧结温 度的升高而降低,在 1400℃时达到最低值。在 1200 ~ 1300℃烧结的 Ce_{0.1}Y_{2.9}Fe₅O₁₂ 具有相对较高的初始磁导 率 μ_0 值为 3.68 ~ 3.90,该值为设计基于大法拉第旋转角 的 YIG 基微波器件提供了可行的依据和参考。

参考文献 References

- E. Baños-López, F. Sánchez-De Jesús, C. A. Cortés-Escobedoet al,<u>Materials[J]</u>, 2018, 11(9):1652.
- [2] Y. J. Siao, XD. Qi, <u>J. Alloys Compd[J]</u>, 2017, 691:672.
- [3] S. M. Zanjani, M. C. Onbasli, <u>AIP Adv[J]</u>, 2019, 9(3):035024 .
- [4] K. Saker, M. Lahoubi, S. Pu,<u>Opt. Quantum Electron</u>[J], 2021, 53(6):334.
- [5] F. N. Shafiee, Ra. S. Azis, N. H. Abdullahet al,<u>J. Aust. Ceram.</u> <u>Soc</u>[J], 2020, 56 (3):1097.
- [6] R. Fopase, V. Saxena, P. Sealet al, Mater. Sci. Eng. C[J], 2020, 116:

111163.

- [7] Z. Jin, H. Zhou, X. Zhanget al, <u>ACS Mater. Lett</u>[J], 2023, 5(3):
 803.
- [8] C. J. Firby, A.Y. Elezzabi, <u>Appl. Phys. Lett</u>[J], 2016, 108(5):051111.
- [9] K. Saker, T. Bouchemat, M. Lahoubi et al, <u>J Phys Conf Ser[J]</u>, 2019, 1310(1): 012019.
- [10] P. Dulal, A. D. Block, T. E. Gage*et al*, <u>ACS Photonics</u>[J], 2016, 3(10): 1818.
- [11] B. Hekmatnia, M. Naser-Moghadasi, M. Khatir, <u>Opt. Quantum</u> <u>Electron[J]</u>, 2020, 52(1):9.
- [12] B. K. Nayak, E. Buks, J. Appl. Phys[J], 2022, 132(19): 193905.
- [13] A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky et al, <u>Opt.</u> <u>Mater</u>[J], 2016, 52: 21.
- [14] S. Higuchi, Y. Furukawa, S. Takekawaet al, <u>Sens. Actuator A</u> <u>Phys</u>[J],2003, 105(3): 293.
- [15] H. Eftekhari, M.M. Tehranchi, *Optik*[J], 2020, 207: 163830.
- [16] A. Frej, I. Razdolski, A. Maziewski*et al*, <u>*Phys. Rev. B*</u>[J], 2023, 107(13): 134405.
- [17] P. S. Carter, *IEEE Trans Microw Theory Tech*[J], 1961, 9(3): 252.
- [18] S. Du, Q. Yang, M. Wanget al, <u>IEEE Trans. Magn</u>[J], 2022, 58(8):
 1.
- [19] D. Yan, H. Chen, Q. Chenget al, <u>Opt. Laser Techno</u>[J], 2023, 161: 109193.
- [20] D. Zhang, W. Song, G. Chai, <u>J. Phys. D[J]</u>, 2017, 50(20): 205003.
- [21] L. Duan, D. Yang, Z. Wanget al,<u>J. Alloys Compd</u>[J], 2023, 966: 171527.
- [22] S. Higuchi, Y. Takekawa, O. Kitamura, <u>Jpn. J. Appl. Phys</u>[J], 1999, 38(7R): 4122.
- [23] M. Imamura, H. Asada, R. Nishimura*et al,<u>J. Magn. Magn.</u> <u>Mater</u>[J], 2022, 550: 169081.*
- [24] A. R. Will-Cole, J. L. Hart, V. Lauter*et al*, <u>*Phys. Rev. Mater*[J]</u>, 2023, 7(5): 054411.
- [25] A. Ikesue, Y. L. Aung, J. Eur. Ceram. Soc[J], 2022, 42(14): 6762.
- [26] Y. L. Aung, A. Ikesue, T. Watanabe*et al, J. Alloys Compd*[J], 2019, 811: 152059.
- [27] Y. Zhang, C.T. Wang, X. Lianget al,<u>J. Alloys Compd</u>[J], 2017, 703: 591.
- [28] T. Bayaraa, C. Xu, D. Campbell *et al*, <u>*Phys. Rev. B*</u>[J], 2019, 100(21): 214412.
- [29] H. X. Zhang, S. Y. Zhu, J. Zhanet al, <u>Chin. Phys. Lett</u>[J], 2023, 40(12): 127801.
- [30] J. Zheng, Q. Fu, X. Chenet al, <u>J. Mater. Sci. Mater. Electron[J]</u>, 2021, 32: 290.

- [31] A. Kord, D. L. Sounas, A. Alu, <u>Proc. IEEE[J]</u>, 2020, 108(10): 1728.
- [32] A. Ikesue, J. Am. Ceram. Soc[J], 2018, 101(11): 5120.
- [33] H. Aida, R. Watanuki, A. Itoet al, <u>Mater. Lett</u>[J], 2020, 276: 128228.
- [34] P. Cao Van, S. Surabhi, V. Dongquoc *et al*, <u>Appl. Surf. Sci</u>[J], 2018, 435: 377.
- [35] C. Kang, T. Wang, C. Jianget al, <u>J. Alloys Compd</u>[J], 2021, 865: 158903.
- [36] M. Gharibshahi, *Ceram. Int*[J], 2019, 45(18): 24437.
- [37] R. Peña-Garcia, Y. Guerra, D. M. Buitragoet al, <u>Ceram. Int[J]</u>, 2018, 44(10): 11314.
- [38] H. Li, *Ceram. Int*[J], 2020, 46(10): 15408.
- [39] N. P. Duong, D. T. Thuy Nguyet, T. T. Loanet al, <u>Ceram. Int[J]</u>, 2021, 47(5): 6442.
- [40] M. J. Kim, H. J. Ok, Y. Sonet al, <u>Mater. Charact</u>[J], 2022, 194: 112266.
- [41] M. A. Musa, R. a. S. Azis, N. H. Osman et al, <u>Results</u> <u>Phys</u>[J], 2017, 7: 1135.
- [42] J. Liu, Q. Jin, S. Wanget al, <u>Mater. Chem. Phys</u>[J], 2018, 208: 169.
- [43] M. Basavad, H. Shokrollahi, H. Ahmadvandet al, <u>Ceram. Int[J]</u>, 2020, 46(8): 12015.
- [44] H. Yu, L. Zeng, C. Luet al, <u>Mater. Charact[J]</u>, 2011, 62(4): 378.
- [45] A. V. Anupama, R. Kumar, H. K. Choudhary*et al*, <u>*Ceram. Int*</u>[J], 2018, 44(3): 3024.
- [46] M. Mansournia, M. Orae, *J. Rare Earths*[J], 2018, 36(12): 1292.
- [47] Majid N. Akhtar, A. Bakar Sulong, Muhammad A. Khanet al,<u>J.</u> <u>Magn. Magn. Mater</u>[J], 2016, 401: 425.
- [48] A. Spivakov, C. R. Lin, C. Y. Tsai*et al*, <u>Nanoscale Res. Lett</u>[J], 2022, 17(1): 70.
- [49] M. Basavad, H. Shokrollahi, M. Golkari, <u>Ceram. Int[J]</u>, 2020, 46(12): 20144.
- [50] A. Z. Arsad, N. B. Ibrahim, <u>J. Magn. Magn. Mater</u>[J], 2016, 410: 128.
- [51] E. Baños López, C. A. Cort & Escobedo, F. Sánchez De Jesúset al,J. Alloys Compd[J], 2018, 730: 127.
- [52] M. A. Janifer, C. J. Prabagar, M. M. L. Soniaet al, <u>J. Supercond.</u>

<u>Nov. Magn[J]</u>, 2022, 35(10): 2987.

- [53] K. Wojciechowski, R. Lach, M. Stanet al, <u>Materials</u>[J], 2021, 14(23): 7316.
- [54] A. B. Bhosale, S. B. Somvanshi, V. D. Murumkar*et al*, <u>*Ceram.*</u> <u>*Int*[J]</u>, 2020, 46(10): 15372.
- [55] P. Vaqueiro, M. A. López Quintela, <u>Chem. Mat[J]</u>, 1997, 9(12): 2836.
- [56] 欧阳林峰,杨晓娇,李小磊,等.溶胶-凝胶法合成导电 SrVO_3 粉末(英文) [J]. <u>稀有金属材料与工程</u>, 2022, 51 (06): 2039.
- [57] P. Ayyub, V. R. Palkar, S. Chattopadhyayet al, <u>Phys. Rev. B[J]</u>, 1995, 51(9): 6135.
- [58] A. Ikesue, Y. L. Aung, R. Yasuharaet al, <u>J. Aust. Ceram. Soc</u>[J], 2020, 40(15): 6073.
- [59] B. Chacko, A. B. Thirumalasetty, V. Vijayakanthet al, <u>ACS</u> Omega[J], 2023, 8 (22):19367.
- [60] R. L. Coble, *J. Appl. Phys*[J], 1961, 32(5): 787.
- [61] M. Jarcho, C. H. Bolen, M. B. Thomas*et al.,<u>J. Mater. Sci</u>*[J], 1976, 11: 2027.
- [62]刘佳男,马伟民,马雷,等.Gd₂Ti₂O₇:Ce 粒子的表观活化能及发光 性能[J].<u>稀有金属材料与工程</u>,2016,45(03):802.
- [63] Z. Cheng, H. Yang, L. Yuet al, <u>J. Mater. Sci. Mater. Electron[J]</u>, 2008, 19: 442.
- [64] J. Rongjin, Y. Wenhui, F. Caixianget al, <u>J. Mater. Chem. C[J]</u>, 2013, 1(9): 1763.
- [65] N. B. Ibrahim, A. Z. Arsad, <u>J. Magn. Magn. Mater</u>[J], 2016, 401: 572.
- [66] E. C. Stoner, E. P. Wohlfarth, <u>IEEE Trans. Magn[J]</u>, 1991, 27(4): 3475.
- [67] Cullity B D, Graham C D. Introduction to magnetic materials[M]. John Wiley & Sons, 2011.
- [68] S. M. Masoudpanah, S. A. Seyyed Ebrahimi, <u>J. Magn. Magn.</u> <u>Mater</u>[J], 2011, 323(21): 2643.
- [69] M. I. Khan, M. Waqas, M. A. Naeem*et al.<u>Ceram. Int</u>[J],2020,46* 0: (17):27318 et

Preparation and magnetic properties of Ce_xY_{3-x}Fe₅O₁₂polycrystal with high magneto-optical properties

Luan Lijun, Xu Changyan, Zhang Ziqiu, Xie Haichen

(Chang'an University, Xi'an, 710064, China)

Abstract: The garnet type polycrystal $Ce_xY_{3,x}Fe_5O_{12}$ doped with Ce^{3+} was prepared by an optimized sol-gel method (*x*=0,0.1,0.2,0.3; Ce:YIG), the optimal solution is to obtain crystals with no derived impurities and high magneto-optical properties by pre-sintering and sintering in a wide temperature range of 900-1400 °C. Thermogravimetric analysis was used to determine the synthesis temperature of the crystal at 890 °C. *X*RD results show that the crystal lattice constant varies from 12.37241 Å to 12.4121 Å, and the impurity phase CeO₂ appears when Ce>0.2. SEM analysis shows that the grain size of Ce:YIG increases with the increase of sintering temperature and Ce³⁺ content, and its size distribution ranges from 0.257 to 6.52µm, which is the maximum size of YIG crystal obtained at present. All Ce: YIG samples were ferromagnetic at room temperature, with saturation magnetization varying from 23.47 to 28.10emu/g. The permeability of Ce_{0.1}Y_{2.9}Fe₅O₁₂ crystal sintered in this temperature range is likely to obtain the best Faraday rotation performance.

Key words: Sol-gel method; Yttrium iron garnet; Sintering temperature; Magnetic properties

Corresponding author:Luan Lijun, female, born in 1976, doctoral, associate professor, School of Materials Science and Engineering, Chang'an University, Xi'an, Shaanxi 710061, telephone: 13309278863, email: nmllj050@chd.edu.cn