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Abstract: The internal pressure within fission gas bubbles (FGBs) in irradiated nuclear fuels drives mechanical interactions with the 
surrounding fuel skeleton. To investigate the micromechanical stress fields in irradiated nuclear fuels containing pressurized FGBs, a 
mechanical constitutive model for the equivalent solid of FGBs was developed and validated. This model was based on the modified 
Van der Waals equation, incorporating the effects of surface tension. Using this model, the micromechanical fields in irradiated U-
10Mo fuels with randomly distributed FGBs were calculated during uniaxial tensile testing via the finite element (FE) method. The 
macroscopic elastic constants of the irradiated U-10Mo fuels were then derived using homogenization theory, and the influences of 
bubble pressure, bubble size, and porosity on these constants were examined. Results show that adjacent FGBs exhibit mechanical 
interactions, which leads to distinct stress concentrations in the surrounding fuel skeleton. The macroscopic elastic constants of 
irradiated U-10Mo fuels decrease with increasing the macroscopic porosity, which can be quantitatively described by the Mori-Tanaka 
model. In contrast, bubble pressure and size have negligible effects on these constants.

Key words: effective mechanical constitutive model; fission gas bubbles; FE method; U-10Mo nuclear fuels; macroscopic elastic 

constants

11  Introduction  Introduction

During irradiation in reactors, both solid and gaseous 
products are generated in nuclear fuels through the fission 
process. Among these products, fission gases are of particular 
concern due to their significant impact on fuel performance. 
They induce changes in the microstructure, physical proper-
ties, stress fields, and swelling deformation of nuclear 
fuels[1–6]. On average, one fission gas atom (xenon or krypton) 
is produced for every four fission events[7–8]. These fission gas 
atoms tend to form fission gas bubbles (FGBs) due to their 
low solubility in the nuclear fuel matrix[9]. Transmission 
electron microscopy (TEM) and scanning electron microscopy 
(SEM) studies have revealed that FGBs are distributed both 
within the grains (intragranular) and along the grain bound-
aries (intergranular) of the nuclear fuel[10–11]. Meanwhile, the 
density of intergranular bubbles increases with burnup, and 

micrometer-sized FGBs are randomly distributed throughout 
the grains in high-burnup fuels[12].

The formation and growth of FGBs transform irradiated 
nuclear fuels into porous structures, thereby degrading their 
macroscopic thermal conductivity and elastic modulus. The 
evolution of these macroscopic properties can be described as 
functions of the macroscopic porosity of the irradiated 
fuels[2–3,9,13]. As FGBs become filled with fission gas atoms, 
internal bubble pressure develops within the bubbles. In irra-
diated U-Mo fuels, this bubble pressure ranges from several 
MPa to hundreds of MPa[14]. The pressure is determined by the 
temperature, volume of FGBs, and the number of fission gas 
atoms, as described by the modified Van der Waals 
equation[15–18]. These pressurized FGBs mechanically interact 
with the surrounding solid fuel matrix and are also constrained 
by the surface tension of the bubbles[3–4].

In models of fission gas swelling, bubble pressure is 
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typically expressed as the sum of surface tension and the 
macroscale hydrostatic pressure of the homogenized porous 
fuels[17–18]. However, the equivalent spherical shell model[18], 
which is based on a single bubble, cannot precisely capture 
the complex mechanical fields in irradiated fuels with 
numerous FGBs, although it can be used to estimate 
macroscale swelling strains. To address this restriction, Cao et 
al[4] developed a pore pressure model for FGBs in UO2 fuels, 
considering pore size characteristics and burnup conditions. 
They established a 2D finite element (FE) model of the fuel 
particle with non-uniformly distributed FGBs to calculate the 
stress fields in high-burnup UO2 fuels. In their studies, bubble 
pressure was applied as a load boundary condition on the 
bubble surfaces within the UO2 particle. However, this applied 
pressure remained constant and did not vary with the 
deformation of the fuel skeleton or FGBs. To better reflect the 
relationship between bubble pressure and the deformation of 
FGBs, it is necessary to develop an effective mechanical 
constitutive model for FGBs. Jiang et al[19] proposed a method 
for 3D simulation of internal gas effects on thermal-
mechanical behavior in nuclear fuel elements. In their 
approach, the internal gas volume was represented by an 
equivalent solid with a constant elastic modulus. However, 
this model does not satisfy the modified Van der Waals 
equation, which describes the relationship between the 
variation in pressure and the internal gas volume.

In this study, a mechanical constitutive model for the 
equivalent solid of FGBs is derived based on the modified Van 
der Waals equation, incorporating the effect of surface tension. 
Using this model, the mechanical response of FGBs and the 
interaction between FGBs and the surrounding fuel skeleton 
under varying external loads are calculated. FE simulations of 
uniaxial tensile tests are performed on irradiated U-10Mo 
fuels containing pressurized FGBs. The macroscopic elastic 
constants of these fuels are then determined using 
homogenization theory, based on the microscopic mechanical 
fields within FGBs and the U-10Mo fuel skeleton. The effects 
of bubble pressure, bubble size, and porosity on the 
macroscopic elastic constants were investigated. Additionally, 
the calculated macroscopic elastic constants were compared 
with the experimental data in reference and results from other 
theoretical models to validate the applicability of the proposed 
mechanical constitutive model for FGBs.

22  Effective Mechanical Constitutive Model for   Effective Mechanical Constitutive Model for 
FGBs FGBs 

Spherical models are generally used to describe the 
geometry of FGBs[4,6,18,20]. The force analysis for a spherical 
FGB is shown in Fig. 1. The constraint pressure of the 
surrounding fuel skeleton, bubble pressure, and surface 
tension satisfy the force balance equation, as follows:

Pb = Ps +
2γ
R

(1)

where Pb is the current bubble pressure; γ is the surface 
tension of FGB; R is the bubble radius; Ps is the constraint 
pressure exerted by the surrounding fuel skeleton, also termed 

as the effective hydrostatic pressure of FGB in this study. Ps is 
the actual pressure subjected to the surrounding fuel skeleton.

According to the modified Van der Waals equation[5,17], the 
bubble pressure is determined by the temperature, the number 
of fission gas atoms, and the volume of FGB, as follows:

Pb(V - hsbv N ) = NkT (2)

where V is the bubble volume with V = 4πR3 /3; N is the 
number of fission gas atoms in the fission gas bubble; k is the 
Boltzmann constant; bv is the Van der Waals constant for Xe 
gas; hs is the fitting parameter according to the hard sphere 
model.

In this study, a FGB is modeled as an equivalent solid with 
the goal of developing an effective mechanical constitutive 
equation that describes the mechanical interactions between 
FGBs and the surrounding fuel matrix. For given values of 
temperature and the number of fission gas atoms, it is 
necessary to establish the relationship between the volume 
change and the bubble pressure variation. According to the 
modified Van der Waals equation, the ratio of the current 
bubble volume V to the initial bubble volume V0 can be 
expressed as follows:

V
V0

=
NkT/Pb + hsbv N

N0kT0 /Pb0 + hsbv N0

(3)

where Pb0, N0, and T0 denote the initial bubble pressure, the 
number of fission gas atoms, and the temperature before the 
volume changes, respectively.

The volume ratio can also be expressed as a function of the 
volumetric strain, as follows:

V
V0

= eεkk (4)

where εkk depicts the first invariant of the logarithmic strain 
tensor, which refers to the volumetric strain relative to the 
reference configuration.

Combining Eq. (3) and Eq. (4), the current bubble pressure 
can be obtained, as follows:

Pb =
NkT

eεkk( )N0kT0 /Pb0 + N0hsbv - hsbv N

     =
c1

eεkkc2 - c3

(5)

where c1 = NkT ;   c2 = N0kT0 /Pb0 + N0hsbv ;   c3 = hsbv N.
According to Eq. (1) and Eq. (5), the effective hydrostatic 

pressure of FGB is expressed as follows:

Fig.1  Force analysis of FGB
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Ps =
c1

eεkkc2 - c3

-
2γ

R0e
1
3
εkk

(6)

where R0 represents the initial radius of FGB.
Thus, the effective mechanical constitutive equation for the 

equivalent solid of FGB is developed as follows:

σ ij = -Psδij = ( -
c1

eεkkc2 - c3

+
2γ

R0e
1
3
εkk ) δij (7)

where σ ij denotes the stress components; δ ij represents the 
Kronecker delta. For a given time increment, the stresses at 
the end can be calculated using the initial configuration as the 
reference one. Herein, the volumetric strain represents the 
incremental strain relative to the initial state.

To compute the mechanical response of the equivalent solid 
for FGBs using FE method, the consistent stiffness modulus 

Dijkl =
∂σ ij∂εkl

 is needed for the equilibrium iteration. According 

to Eq. (7), the corresponding consistent stiffness modulus can 
be derived as follows:

Dg
ijkl =

é

ë

ê

ê
êê
ê

ê c1c2eεmm

( )eεmmc2 - c3

2
-

2γe
1
3
εmm

3R0e
2
3
ε

mm

ù

û

ú

ú
úú
ú

ú
δijδkl (8)

where Dijkl denotes the consistent stiffness modulus, εmm 
reprents the first invariant of the logarithmic strain tensor, and 
δkl is the Kronecker delta.

33  Verification of Effective Mechanical Constitutive   Verification of Effective Mechanical Constitutive 
Equation for Equivalent Solid of FGBsEquation for Equivalent Solid of FGBs

The mechanical constitutive equation for the equivalent 
solid of FGBs, derived based on the modified Van der Waals 
equation and the effect of surface tension, provides a 
foundation for numerically calculating the thermomechanical 
behavior of porous nuclear fuels. To validate the established 
constitutive equation, a spherical model containing FGB and 
the U-10Mo fuel skeleton was constructed to simulate the 
mechanical response under the external pressure. Given the 
geometric and loading symmetry, 1/8 of the spherical model 
was selected as FE model, as shown in Fig.2. The model was 
discretized into 96 876 elements using the C3D8R element 
type. Symmetric boundary conditions were applied to the 
surfaces at x=0, y=0, and z=0, which corresponded to the 
symmetric planes of the 1/8 spherical model. An external 
pressure is applied to the outer surface of the model. Based on 
Ref. [14], the initial bubble pressure and bubble radius were 
set as 50 MPa and 0.2 μm, respectively. The volume fraction 
of FGB (fb) is set as 10%. The temperature and the number of 
fission gas atoms in FE model were assumed to remain 
constant during the application of the external pressure. FE 
simulation was performed using the commercial software 
ABAQUS with the mechanical constitutive equation for the 
equivalent solid of FGBs implemented via a user-defined 
subroutine UMAT.

The hydrostatic pressure results of FE model with the 
pressured FGB are shown in Fig.3. The effective hydrostatic 

pressure of FGB is approximately 40 MPa, which is lower 
than the initial bubble pressure of 50 MPa. This difference is 
attributed to the constraint effect of surface tension on FGB. 
For a FGB with radius of 0.2 μm, the equivalent constraint 
pressure due to surface tension is approximately 10 MPa, 
considering a surface tension γ of 1 N/m[17]. It should be 
mentioned that the initial effective pressure of the gas bubble 
is introduced into the equivalent solid as the initial stresses. It 
can be seen from Fig. 3 that the equivalent solid of the gas 
bubble exhibits mechanical interaction with the surrounding 
fuel skeleton even before the application of external pressure, 
as a result of the mechanical equilibrium that must be 
maintained. The hydrostatic pressures in the surrounding fuel 
skeleton are the same as those under the effective pressures 
applied to the inner surface of the shell model, as obtained 
with the analytical solutions in Ref. [13]. It is demonstrated 
that the effects of bubble pressure on the surrounding fuel 
skeleton can be effectively captured by the stresses in the 
equivalent solid of FGBs.

While applying external pressure to the spherical model 
containing FGB, both the volume of the model and that of 

Fig.2  Schematic diagram (a) and mesh grid (b) of FE model 

containing equivalent solid of FGB and U-10Mo skeleton

Fig.3  Contour plot of hydrostatic pressure in FE model with 

pressured FGB before applying external pressure
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FGB decrease. It is known that the bubble pressure should 
vary with the volume of the FGB in accordance with the 
modified Van der Waals equation. Fig.4 presents the evolution 
of bubble pressure with the volume of the FGB, calculated 
using both FE method and the modified Van der Waals 
equation. The current volume of the FGB is calculated as 
V0eεkk, and FE results of bubble pressure are calculated as 
1
3
σkk +

2γ
R0eεkk /3

. As shown in Fig. 4, the evolution of bubble 

pressure calculated using FE method aligns well with that 
predicted by the modified Van der Waals equation, thereby 
verifying the reliability of the established mechanical 
constitutive equations for the equivalent solid of FGBs.

44  Calculation of Macroscopic Elastic Constants of   Calculation of Macroscopic Elastic Constants of 
Irradiated U-Irradiated U-1010Mo Fuels Using Proposed Me-Mo Fuels Using Proposed Me-
chanical Constitutive Model for Equivalent Solid chanical Constitutive Model for Equivalent Solid 
of FGBs of FGBs 

Macroscale elastic constants (homogenized elastic 
constants) are key material properties of porous nuclear fuels, 
directly influencing their mechanical interactions with the 
cladding in fuel elements. During irradiation, these elastic 
constants degrade with increasing the macroscopic poros-
ity[3,13]. The uniaxial tensile test is a standard method for 
measuring the macroscopic elastic constants of materials[21]. 
Therefore, a uniaxial tensile FE simulation based on a 
representative volume element (RVE) with randomly 
distributed FGBs in the U-10Mo fuel skeleton is performed, 
as shown in Fig.5. FGBs are assumed to have identical bubble 
radii and bubble pressures. To implement the uniaxial tensile 
test, periodic displacement boundary conditions are applied to 
the opposite surfaces of RVE to account for its geometric 
asymmetry. Displacement constraints are applied to nodes 0, 
1, 2, and 3 to restrict rigid body movement and rotation of 
RVE. The uniaxial tensile simulation is performed at a fixed 
temperature of 373 K, and the number of fission gas atoms is 
assumed to remain unchanged during the tensile process in 
this study.

According to the homogenization theory, the macroscopic 
Youngs modulus is expressed as follows:

Ē =
σ̄x

ε̄x

(9)

where σ̄x and ε̄x are the effective stress and strain components 
in the x direction (the tensile direction), respectively.

The macroscopic Poissons ratio (μ̄) is calculated as follows:

μ̄ = -
1
2 ( ε̄y

ε̄x

+
ε̄z

ε̄x ) (10)

where ε̄y and ε̄z are the effective strain components in the y 
and z directions, respectively, which are perpendicular to the 
tensile direction.

The effective stress and strain components are the volume-
averaged results of the U-10Mo fuel skeleton and the 
equivalent solid of FGBs. The effective strain component in 
the x direction is obtained by Eq.(11):

ε̄x =
∑
i = 1

nm

εm
x,iV

m
i +∑

j = 1

nb

εb
x,jV

b
j

∑
i = 1

nm

V m
i +∑

j = 1

nb

V b
j

(11)

where nm and nb are the number of the integration points for all 
the elements of U-10Mo skeleton and the equivalent solid of 
FGBs, respectively; εm

x,i and εb
x,j are the strain components 

along the x direction for the i-th integration point of the         
U-10Mo skeleton and the j-th integration point for the 
equivalent solid of FGBs, respectively; V m

i  and V b
i  are the 

volume of the i-th integration point for the U-10Mo skeleton 
and that of the j-th integration point for the equivalent solid of 
FGBs, respectively. Other effective stress and strain 
components are calculated similarly.

A representative case with an initial bubble pressure of 50 
MPa, a bubble radius of 0.2 μm, and a porosity of 15% for 
FGBs is selected to analyze the stress field results of 
irradiated U-10Mo fuels during the uniaxial tensile test. The 
von Mises stress contour plots on the cross-section in the 
tensile direction before and after loading are shown in Fig.6. 
Even in the absence of external loading, a non-uniform 
distribution of von Mises stress exists within the fuel skeleton, 
as illustrated in Fig. 6a. This uneven stress distribution arises 
from the effects of the stresses in the equivalent solid of 
FGBs. Regions with a higher density of FGBs exhibit elevated 

Fig.4  Comparison of bubble pressure evolution results with volume 

of FGB calculated by FE method and modified Van der Waals 

equation under external pressure

Fig.5  RVE of irradiated U-10Mo fuels with randomly distributed 

FGBs
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von Mises stress due to the interactions between adjacent 
bubbles. The von Mises stress within the FGBs is zero, as 
shown in Fig. 6. This indicates that the stress tensors in the 
equivalent solid of FGBs are spherical ones, representing the 
effective pressures of FGBs. Upon the application of external 
loading, the von Mises stress in the U-10Mo fuel skeleton 
increases continuously, as depicted in Fig.6b.

The macroscopic Young  s modulus is derived from the 
stress-strain curve of the uniaxial tensile test, based on the 
slope in the elastic region. Fig.7 presents the effective stress-
strain curve of RVE in the tensile direction during the uniaxial 
tensile process. It is evident that the effective strain of RVE 
increases linearly with effective stress. According to Eq. (9), 
the calculated macroscopic Young s modulus of RVE is about 
63 GPa, which is lower than the Young  s modulus of dense   
U-10Mo fuel before irradiation (about 85 GPa). The effective 
stress component of RVE in the tensile direction starts at zero, 
as shown in Fig. 7. This indicates that the effective stress 
component of RVE is zero before the external load is applied, 

despite the non-uniform microscopic stress field within RVE. 
This suggests that the stress field is self-balanced inside RVE 
prior to the application of the external load.

Fig. 8 presents the evolution of the effective strain 
components in the y and z directions relative to the effective 
strain component in the x direction of RVE. As the effective 
strain in the x direction increases, the effective strain 
components in the y and z directions decrease linearly, which 
is attributed to the Poisson effect. The trends of the effective 
strain components in the y and z directions are nearly 
identical. According to Eq. (10), the calculated macroscopic 
Poissons ratio of RVE is about 0.316, which is lower than that 
of the dense U-10Mo fuel before irradiation (about 0.34).

The volume fraction of FGBs inside irradiated U-10Mo 
fuels increases with irradiation exposure. The bubble pressure 
and size of FGBs also vary with the local state histories of the 
irradiated U-10Mo fuels, such as local temperature, 
hydrostatic pressure, and grain size. According to the study of 
Li et al[13], the macroscopic elastic constants of irradiated       
U-10Mo fuels can be described with the Mori-Tanaka model 
based on the average volume fraction of intergranular bubbles. 
However, the effects of bubble pressure and bubble size on the 
macroscopic elastic constants of irradiated U-10Mo fuels were 
not discussed in their study due to restrictions in modeling 
FGBs. In their approach, FGBs were modeled as solids with a 
small constant elastic modulus, thereby excluding the effects 
of bubble pressure and surface tension of FGBs. Based on the 
proposed mechanical constitutive equation for the equivalent 
solid of FGBs in this study, the macroscopic elastic constants 
of irradiated U-10Mo fuels with different bubble pressures, 
sizes, and volume fractions of FGBs are further investigated 
through simulations of the uniaxial tensile test.

Fig.9 shows the macroscopic elastic constants of irradiated 
U-10Mo fuels with varying bubble pressures and volume 
fractions of FGBs. The bubble pressure ranges from 20 to 120 
MPa, while the volume fractions of FGBs vary from 5% to 
25%, with a constant bubble radius of 0.2 μm. The 
macroscopic elastic constants calculated using FE method are 
compared with those obtained from the Mori-Tanaka model 
and experimental data[3]. It can be noted that the macroscopic 

Fig.6  Contour plots of von Mises stress on the cross section in x 

direction of RVE before loading (a) and after loading (b)

Fig.7  Effective stress-effective strain fitting line of RVE in x 

direction during loading
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Fig.8  Evolution curve of effective strain in y or z directions versus 

effective strain in x direction during loading
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elastic constants of irradiated U-10Mo fuels are similar under 
different bubble pressures, indicating that bubble pressure has 
a negligible effect on these constants. The results calculated 
by FE method, based on the proposed mechanical constitutive 
equation for the equivalent solid of FGBs, are in good 
agreement with those from the Mori-Tanaka model and 
experimental data.

Fig.10 shows the macroscopic elastic constants of irradiated 
U-10Mo fuels with different sizes and volume fractions of 
FGBs. The uniform bubble radius ranges from 0.1 μm to        
1 μm, while the bubble pressure is held constant at 40 MPa. 
The results indicate that bubble size also has negligible effects 
on the macroscopic elastic constants of irradiated U-10Mo 
fuels. The effective elastic constants calculated by FE 
simulation for fuels with different bubble sizes and volume 
fractions are consistent with those obtained from the Mori-
Tanaka model and experimental data.

55  Discussion   Discussion 

Fig. 11 shows the contour plots of radial stress in the 
surrounding fuel skeleton before the application of external 
pressure. It can be seen that the radial stress in the fuel 
skeleton adjacent to FGB is equal to the hydrostatic stress 
(negative hydrostatic pressure) of the equivalent solid of FGB. 
The radial stress in the surrounding fuel skeleton decreases 

with increasing distance from FGB. To accurately capture the 
evolving mechanical interaction between the fuel skeleton and 
the FGBs under changing irradiation conditions and stress 
fields, it is essential to establish a mechanical constitutive 
model for the equivalent solid of FGBs.

According to the homogenization theory, the effective  
stress components in the x direction of RVE in Fig. 5 can       
be expressed as σ̄x = (1 - fb ) σ̄m

x + fb σ̄
b
x . The components σ̄x, 

σ̄m
x , and σ̄ b

x  correspond to the effective stresses for RVE, the 
fuel skeleton, and the equivalent solid of FGBs, respectively. 
Fig. 12 illustrates the evolution results of σ̄x, σ̄

m
x , and σ̄ b

x  
throughout the uniaxial tensile process. FGBs are initialized 
with a volume fraction of 15%, an average bubble pressure   
of 50 MPa, and a radius of 0.2 μm. As shown in Fig. 12,  
before applying the external tensile stress, σ̄m

x  is about 7 MPa, 
whereas σ̄ b

x  is − 40 MPa. The zero value of σ̄x demon-      
strates that the compressive stress contribution from the 
equivalent solid of FGBs is balanced by the tensile stress 
contribution from the fuel skeleton. During the tensile 
process, both σ̄x and σ̄m

x  increase linearly with the effective 
strain in the tensile direction of RVE, while σ̄ b

x  remains 
substantially unchanged. Similar trends in the evolution of    
σ̄x are observed for the cases with different average pressures 
and radii of FGBs. This indicates that the U-10Mo fuel 
skeleton is the primary load-bearing component under 
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Fig.9  Macroscopic elastic constants of irradiated U-10Mo fuels with different bubble pressure and volume fractions of FGBs: (a) macroscopic 

Youngs modulus; (b) macroscopic Poissons ratio
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external tensile stress. The variation in σ̄x is predominantly 

influenced by σ̄m
x  and the macroscopic porosity, rather than  

the average bubble pressure and radius of FGBs. Thus, it    

can be concluded that the macroscopic elastic constants of 

irradiated U-10Mo fuels are primarily determined by the 

elastic properties of the U-10Mo fuel skeleton and the 

macroscopic porosity. This finding emphasizes the critical 

influence of the fuel skeleton on the overall mechanical 

response of irradiated nuclear fuel.

It is important to note that the volume change of FGBs due 

to the elastic deformation of the U-10Mo fuel matrix is 

minimal. The primary mechanisms contributing to the growth 

of FGBs involve plastic deformation and creep deformation of 

the fuel skeleton[5,22], corresponding to the microscale vacancy 

diffusion and dislocation motion. To account for the time-

integration effects of creep deformation during irradiation, the 

increase in the number of fission gas atoms within FGBs must 

also be considered. From Eq. (5), it is known that the 

variations of the number of fission gas atoms[17,23–24] and 

temperature can also be taken into account. Consequently, the 

developed mechanical constitutive model for the equivalent 

solid of FGBs can also be utilized in thermo-mechanical 

coupling analyses during prolonged irradiation. This 

application will offer a more comprehensive understanding of 

bubble growth behavior and the underlying mechanisms 

driving this growth.

66  Conclusions   Conclusions 

1) The bubble pressure induces non-uniform stress fields in 
the fuel skeleton, even in the absence of external loading. The 
maximum von Mises stress is prone to appear in the regions 
with closely spaced bubbles due to stress interactions between 
adjacent FGBs.

2) The macroscopic elastic constants of irradiated U-10Mo 
fuels are found to be minimally affected by bubble pressure 
and bubble size, which are predominantly determined by the 
macroscopic porosity. This dependency aligns with the 
predictions of the Mori-Tanaka model.
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辐照后U-10Mo燃料裂变气泡的等效固体力学本构模型

李 勇 1，2，严 峰 2，张 静 2，臧丽叶 1，丁淑蓉 2

(1. 中广核研究院有限公司，广东  深圳  518026)

(2. 复旦大学  航空航天系  力学与工程仿真研究所，上海  200433)

摘 要：辐照后的核燃料裂变气泡存在内压，导致周围的燃料骨架内部产生应力。为了计算含压裂变气泡所引起的辐照后核燃料的微观

力学场，本研究基于修正的范德华方程，考虑气泡的表面张力效应，建立并验证了裂变气泡的等效固体力学本构模型。将裂变气泡等效

为固体，建立了含随机分布裂变气泡的辐照U-10Mo燃料的有限元模型，基于所发展的等效固体力学本构模型、算法及程序，对辐照后

燃料的单轴拉伸试验过程进行了有限元模拟，获得了微观力学场的分布及演化结果。根据均匀化理论，获得了辐照U-10Mo燃料的宏观

弹性常数，并研究了气泡压力、气泡尺寸和孔隙率对宏观弹性常数的影响。结果表明，相邻的裂变气泡之间存在力学相互作用，导致周

围骨架产生局部应力集中。辐照后U-10Mo燃料的宏观弹性常数随宏观孔隙率的增加而减小，两者之间的定量关系可以采用Mori-Tanaka

模型描述。气泡压力和尺寸对宏观弹性常数的影响可以忽略。

关键词：等效力学本构模型；裂变气泡；有限元方法；U-10Mo核燃料；宏观弹性常数
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