# CdS 修饰 TiO<sub>2</sub> 纳米管阵列的制备及光催化 性能研究

薛 峰,王 玲,薛建军,包祖国,陶海军,曹志斌

(南京航空航天大学, 江苏 南京 210016)

摘 要: 首先通过恒压阳极氧化法在纯钛箔表面制备 TiO<sub>2</sub>纳米管阵列,其次运用电化学沉积法在 TiO<sub>2</sub>纳米管阵列表面 修饰 CdS 颗粒,最后表征其对甲基橙的光催化降解性能。研究表明,通过电化学沉积可以在管阵列表面获得均匀分布 的 CdS 纳米颗粒。TiO<sub>2</sub>纳米管阵列在经过 CdS 修饰后,对可见光的吸收范围明显增大;光照 2 h 后,对甲基橙的降解 效率由修饰前的 57.1%提高到修饰后的 76.4%, COD 的去除率也从 49%提高到 70.6%。

关键词:阳极氧化;TiO<sub>2</sub>纳米管阵列;CdS纳米颗粒;光催化

中图法分类号: TG 146.2<sup>+</sup>3; TB383 文献标识码: A 文章编号: 1002-185X(2009)07-1238-04

自1972年Fujishima等发现光照TiO2半导体电极具 有分解水的功能<sup>[1]</sup>,特别是1976年Carey等陆续报道了 在紫外光照射下TiO<sub>2</sub>水体系可使各种难降解有机化合 物降解以来<sup>[2]</sup>,纳米TiO<sub>2</sub>光电催化氧化技术作为一种 水处理的方法引起广泛的重视。然而,TiO2光催化剂 大规模的工业应用受到3个关键技术难题的制约:(1) 量子效率低;(2)太阳能利用率低;(3)保持高活性并将 其均匀负载比较困难。因此,许多学者在TiO2改性方 面做了大量的研究工作<sup>[3~5]</sup>。其中针对太阳能利用率低 这个难题,开发可见光激发的光催化剂是个有效途径。 扩展光催化剂的可见光吸收范围的方法有:贵金属修 饰、窄禁带半导体复合、染料光敏化、金属离子与非 金属离子掺杂、离子注入[6,7]等。在复合窄禁带半导体 研究方面,许多学者将CdS、CdSe、PbS、Fe<sub>2</sub>O<sub>3</sub>等窄 禁带半导体与TiO2进行复合,制备出表面或体相复合 物,提高了光催化剂对可见光的响应性能<sup>[8]</sup>。本实验 运用电化学沉积法将CdS颗粒修饰在TiO<sub>2</sub>纳米管阵列 表面,研究其对甲基橙的光催化降解性能。

# 1 实 验

TiO<sub>2</sub> 纳米管阵列的制备在自制的阳极氧化装置中进行。0.5%HF(质量分数)水溶液为电解液,电源为恒压/恒流源,特定尺寸(3 cm×2 cm)的钛箔试样片为阳极, 铂片为阴极,两极间距离为 4 cm,试验中保持室温(20 ℃)。试样的制备采用恒压阳极氧化法,选取 20 V 的恒定电压,氧化时间分别是 20 min, 1 h,实验过程中采用 磁力搅拌保持整个体系温度和电解质成分的均匀,促进 体系散热。

氧化后的试样放置在管式炉中,空气中升温到 450 ℃,恒温下保温 3 h 后随炉冷却即得到结晶态的 TiO<sub>2</sub>纳 米管阵列。前期的研究表明,450 ℃热处理后,TiO<sub>2</sub>为 锐钛矿相和金红石相的混晶,具有更高的光催化活性<sup>[9]</sup>。

选取30 mg/L的甲基橙模拟废水作为光催化对象, 研究不同结构参数的TiO<sub>2</sub>纳米管阵列对甲基橙的降解 率及其化学需氧量(COD)的去除率。采用惠普上海分析 仪器有限责任公司的6010紫外-可见光分光光度计测 定甲基橙在最大吸收波长463.5 nm处的吸光度*A*,根据 Beer定律计算降解率。COD的去除率通过COD测定仪 (HE99721)的测量并计算获得。氧化膜表面、截面形貌 的表征采用LEO-1530VP场发射扫描电镜。

将热处理后的TiO<sub>2</sub>纳米管阵列置于盛有50mL甲 基橙溶液的石英反应器中,用循环水冷却使反应过程 中石英反应器保持25℃左右。高压汞灯垂直放于双壁 U形石英冷却套管中。

利用三电极体系在热处理后的 TiO<sub>2</sub> 纳米管阵列 上电沉积 CdS。其中三电极体系为:饱和甘汞电极为 参比电极,Pt 电极为对电极,表面有 TiO<sub>2</sub> 纳米管阵列 的钛箔为工作电极。电解液主要为 0.05 mol/L 硫代乙 酰胺(CH<sub>3</sub>CSNH<sub>2</sub>)与 0.1 mol/L 的氯化镉(CdCl<sub>2</sub>)的混合 溶液。采用电化学工作站作为工作电源,电压为-0.65 V,电化学沉积时间是 2000 s。制备的试样再经 350 ℃ N<sub>2</sub> 气氛热处理。此外,试样表面、截面形貌的表征同

收到初稿日期: 2008-06-23; 收到修改稿日期: 2009-04-17

基金项目:"十一五"国家科技支撑计划(2006BAD04A12)

作者简介: 薛 峰, 男, 1984 年生, 硕士生, 南京航空航天大学材料科学与技术学院, 江苏 南京 210016, 电话: 025-52112911; 通讯 作者: 王 玲, 电话: 025-52112911

TiO<sub>2</sub>纳米管阵列的表征。

## 2 结果与讨论

## 2.1 TiO<sub>2</sub>纳米管阵列的表征

图1为20 V氧化电压下,不同氧化时间制备的TiO<sub>2</sub> 纳米管阵列形貌。由前期的研究可知<sup>[10]</sup>,TiO<sub>2</sub>纳米管 阵列的生长过程是一个动态平衡过程(溶解与生长的 动态平衡过程),当氧化时间达到一定值时,纳米管的 长度即达到最大值。在本试验条件下,当氧化时间进 行至1 h时,纳米管长度即达到极限值500 nm。由图1 可以清晰看出,此试验条件可以制备出形貌规则的纳 米管阵列结构,氧化时间对纳米管长度有显著影响(由 氧化20 min时的390 nm增加至1 h的500 nm),而对纳米 管的平均管内、外径值并无太大影响。



图 1 不同氧化时间下 TiO<sub>2</sub>纳米管阵列的表面、截面形貌 Fig.1 FE-SEM top and cross-sectional images of TiO<sub>2</sub> nanotube arrays anodized under 20 V for different time: (a) surface, 20 min and (b) section, 1 h

## 2.2 TiO<sub>2</sub>纳米管阵列的光催化实验

光催化实验表明:随着光照时间的增加,甲基橙的降解率及其COD的去除率都不断提高(图2)。这是因为随着光催化时间的延长,甲基橙的发色基团被破坏,长链结构断裂,甲基橙的降解率不断增加;水中的有机物被电极深度降解,逐步矿化,最终生成CO<sub>2</sub>和H<sub>2</sub>O,使水中还原性物质不断减少,COD值下降。此外,当阳极氧化时间从20 min延长到1 h时,甲基橙的降解率由45.1%提高到57.1%(图2a),COD的去除率由35.3%提

高到49%(图2b)。这说明当纳米管长度增加(如图1)时, 有机物及光线能够进入到TiO<sub>2</sub>纳米管深处,激发TiO<sub>2</sub> 表面的活性中心,形成了更多强氧化性的羟基自由基 (OH·),氧化有机物,从而提高了光催化的效率。



图 2 不同阳极氧化时间对甲基橙降解率以及 COD 去除率的 影响

Fig.2 Effect of anodizing time on the degradation of methyl orange and removal of COD: (a) the degradation of methyl orange and (b) the removal of COD

#### 2.3 CdS 修饰 TiO<sub>2</sub> 纳米管阵列的制备及表征

上述表明:氧化电压为 20 V,氧化时间为 1 h 并 经过 450 ℃热处理的 TiO<sub>2</sub> 纳米管阵列具有更好的光 催化活性,将以此参数制备的纳米管阵列为对象,研 究沉积 CdS 对纳米管阵列光催化性能的影响。

图 3 为电化学沉积 CdS 后 TiO<sub>2</sub> 纳米管阵列表 面、截面形貌。由图 3a 可以看出,电沉积后 TiO<sub>2</sub> 纳米管阵列的表面,特别是纳米管的管壁顶端集中 分布有纳米级的球状颗粒;图 3b 中显示,在纳米管 管壁之间的空隙处也存在有少量的此种纳米颗粒。 初步断定这就是所需要合成的 CdS 纳米颗粒。图 4 和图 5 分别给出了修饰后 TiO<sub>2</sub> 纳米管阵列的 EDS 和 XRD 图谱。



- 图 3 电化学沉积 CdS 后 TiO<sub>2</sub>纳米管阵列表面、截面形貌 Fig.3 FE-SEM top (a) and cross-sectional images (b) of TiO<sub>2</sub>
  - nanotube arrays after electrochemical deposition of CdS



图 4 电化学沉积 CdS 后 TiO<sub>2</sub>纳米管阵列的 EDS 能谱图 Fig.4 EDS pattern of TiO<sub>2</sub> nanotube arrays after electrochemical deposition of CdS

由EDX图谱(如图4)可以看出,CdS修饰后的TiO<sub>2</sub> 纳米管阵列除了Ti、O元素外,还包括少量的Cd、S两 种元素。由图中数据可见,这两种元素的化学配比接 近1:1,说明图5中纳米颗粒是以CdS的形式存在。此外, 通过对试样XRD的分析,表明CdS颗粒只是沉积在纳米 管的表面,并未进入TiO<sub>2</sub>晶体的晶格,因为由图5可以 看出,TiO<sub>2</sub>在25°(锐钛矿)和27°(金红石)处的特征衍射峰 在CdS沉积前后没有本质的变化。图中在26.55,30.75, 52.16,54.67°出现的一系列特征峰,分别对应立方晶系 CdS在(111),(200),(311)和(222)晶面的衍射峰<sup>[11]</sup>。





Fig.5 XRD pattern of  $TiO_2$  nanotube arrays after electrochemical deposition of CdS

### 2.4 CdS 修饰 TiO<sub>2</sub>纳米管阵列的光催化实验

图6显示用CdS修饰前后TiO<sub>2</sub>纳米管阵列对甲基 橙降解率以及COD去除率的变化情况。从图中可以看 出,电化学沉积CdS之后,TiO<sub>2</sub>纳米管阵列的光催化性 能得到了明显提高,甲基橙的降解率由57.1%提高到



图 6 CdS 修饰之后对甲基橙降解率以及 COD 去除率的影响

Fig.6 Effect of modifycation by CdS on the degradation rate of methyl orange (a) and removal rate of COD (b)

76.4%(图 6a), COD 的去除率由 49%提高到 70.6%(图 6b)。CdS 的能隙宽度为 2.42 eV,当有波长小于 425 nm 的光线入射时,CdS 价带中的电子首先被激发到导带中,产生空穴-电子对,由于 TiO<sub>2</sub>导带的电位高于 CdS 导带,因而 CdS 导带中的电子容易流向更高电位的 TiO<sub>2</sub>导带,而 CdS 价带中的空穴留在原处,从而使空 穴-电子对得到很好的分离,减少了光生载流子复合,从而大大提高光催化剂的光催化性能。此外,CdS 复 合 TiO<sub>2</sub> 半导体还可以防止单纯 CdS 易产生的光腐蚀 现象<sup>[12,13]</sup>。

## 3 结 论

1) 通过恒压阳极氧化法在 0.5%HF 水溶液中制备 的 TiO<sub>2</sub> 纳米管阵列具有完整的管状结构。纳米管的长度 随时间的延长先增加后保持不变。阳极氧化时间为 20 min 时,纳米管的长度为 390 nm 氧化时间 延长至 1 h 时,纳米管的长度增加到 500 nm 随 着阳极氧化时间的 延长,纳米管的长度增加,TiO<sub>2</sub> 纳米管阵列对甲基橙模 拟废水的光催化降解性能增强。

2) 通过电化学沉积法,在TiO<sub>2</sub>纳米管阵列(20V, 1 h)表面可以制备出均匀分布的CdS纳米颗粒。修饰 后的纳米管阵列光催化性能显著提高,甲基橙的降解率 由57.1%提高到76.4%,COD的去除率由49%提高到 70.6%。

#### 参考文献 References

Fujishima A, Honda K, Nature [J], 1972, 238(53~58): 37
Carey J H, Lawrence J, Tosine H W. Bull Environ Contam

Toxic[J], 1976, 16(6): 697

- [3] Sukharev V 1, Kershaw R. Photochem Photobiol A[J], 1996, 98(3): 165
- [4] Yan Xiuru(颜秀茹), Li Xiaohong(李晓红), Song Kuangxiu(宋 宽秀) et al. Technology of Water Treatment(水处理技术)[J], 2000, 26(1): 42
- [5] Liu Ping(刘平). Acta Physico-Chimica Sinica (物理化学学报)[J], 2001, 17(3): 265
- [6] Shen Weireng(沈伟韧), Zhao Wenkuan(赵文宽), He Fei(贺飞) et al. Progress in Chemistry(化学进展)[J], 1998, 10(4): 349
- [7] Wu Yu(吴 越). Catalytic Chemistry(催化化学)[M]. Beijing: Science Press, 2001: 68
- [8] Guan G Q , Kida T , Kusakabe K et al. Applied Catalysis A:General [J], 2005, 295: 71
- [9] Tao Haijun(陶海军), Qin Liang(秦 亮), Wang Ling(王 玲) et al. The Chinese Journal of Nonferrous Metals(中国有色金属 学报)[J], 2007, 17(5): 693
- [10] Tao Haijun(陶海军). Fabrication and Properties of TiO<sub>2</sub> Nanotube Arrays Prepared by Anodic Oxidation TiO<sub>2</sub>(TiO<sub>2</sub> 纳米管阵列的阳极氧化制备及性能研究)[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008
- [11] Siguang Chena et al. Journal of Photochemistry and Photobiology A: Chemistry[J], 2006, 177: 177
- [12] Lee J, Park H, Choi W. Environ Sci Technol[J], 2002, 36: 5462
- [13] Wu Fengxia (吴凤霞), Yin Hairong(殷海荣), Yang Yong(杨勇) et al. Foshan Ceramics(佛山陶瓷)[J], 2001, 11(6): 10

# Fabrication and Photocatalytic Properties of TiO<sub>2</sub> Nanotube Arrays Modified by CdS

Xue Feng, Wang Ling, Xue Jianjun, Bao Zhuguo, Tao Haijun, Cao Zhibing (Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China)

**Abstract:** Titanium oxide nanotube arrays were fabricated from a pure titanium foil with invariable anodizing voltage. CdS nanoparticles were then deposited upon the  $TiO_2$  nanotube arrays by electrochemical deposition method. And it was used to degrade the methyl orange. Results showed that CdS nanoparticals were evenly distributed upon the surface of the nanotube arrays and the doped nanotube arrays has better photocatalytic properties. The degradation of the methyl orange increases from 57.1% to 76.4% and the removal of the COD increases from 49% to 70.6% after 2 hours of irradiation.

Key words: anodic oxidation; titanium oxide nanotube arrays; CdS nanopartical; photocatalytic properties

Biography: Xue Feng, Candidate for Master, College of Material Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China, Tel: 0086-25-52112911; Corresponding Author: Wang Ling, Tel: 0086-25-52112911