磁致 Fe78Si9B13 非晶合金纳米晶化磁矩的理论计算

周迎春^{1,2},张群²,晁月盛¹

(1. 东北大学,辽宁 沈阳 110004)(2. 辽宁工业大学,辽宁 锦州 121001)

摘 要:用低频脉冲磁场处理非晶 Fe₇₈Si₉B₁₃ 合金,在低温下发生了纳米晶化,利用 Mössbauer 谱和 LDJ9600 震动样品 磁强计进行了微结构和磁性分析。借助于固体与分子经验电子理论中的 BLD 方法,计算了非晶 Fe₇₈Si₉B₁₃ 合金磁致低 温纳米晶化前后的价电子结构,并算出了磁矩,其理论计算值与实验测定值的误差小于 7%,满足一级近似要求,说明 从价电子层次上计算非晶合金的磁矩是可以实现的。

关键词:非晶 Fe₇₈Si₉B₁₃合金;低频脉冲磁场;价电子结构;磁矩

中图法分类号: TG132.2⁺7

文献标识码: A 文章编号: 1002-185X(2009)10-1791-06

非晶态合金特殊的组织结构导致其具有优异的力 学、化学和物理学性能。然而,非晶态合金是一种热 力学亚稳态,当条件发生变化时,能向着稳定的状态 ——晶化方向转变^[1~5]。Datta 等研究发现,在 Metglas 非晶基体中,若能出现体积比约为 5%的晶化相 α -Fe(Si), 而没有出现其它晶化相或其它晶化相所含比 例不高时,能降低高频能耗^[6]。Hasegawa 等也证实了 部分晶化有利于软磁性能的提高^[7]。近年来, 晁月盛 等对铁基非晶的低频脉冲磁场处理效应进行了研究, 并且通过调节脉冲磁场处理参数引起非晶 Fe78Si9B13 合金中 α-Fe(Si)晶化相的析出^[8~11]。因此,从改善非晶 合金的软磁性能出发,从理论上计算低频脉冲磁场处 理非晶 Fe78Si9B13 合金纳米晶化过程中晶化量与性能 的关系具有重要的意义。本工作利用固体与分子经验 电子理论(EET 理论)中的 BLD 方法对低频脉冲磁场 处理前后的非晶 Fe78Si9B13 合金的磁矩进行了计算,从 电子层次上初步揭示了非晶 Fe78Si9B13 合金纳米晶化 后软磁性能提高的本质原因。

1 实 验

本实验所用 Fe₇₈Si₉B₁₃非晶薄带由北京钢铁研究 总院国家非晶微晶合金工程研究中心提供。宽 20 mm,厚 30 μm。非晶试样的脉冲磁场处理在程控脉 冲电流/磁场装置上进行。对脉冲磁场处理前后的试 样用 LDJ9600 震动样品磁强计测定了磁性,采用微 机控制的恒加速透视式穆斯堡尔谱仪测得试样的晶 化量, γ 射线辐射源为 57Co/Pd, 实验数据以 MUS8 计算机程序处理, 拟合精度 x^2 →1.0。试样处理过程 中的温升用 LRSC 型红外非接触测温仪测量, LRSC 型红外非接触测温仪的测量温度范围为-30~1200 ℃,测温精度为±2 ℃。在实验条件下的脉冲磁场处 理过程中,试样的最大温升 Δt 为 10 ℃。处理时的磁 场强度 H、脉冲频率 f、处理时间 t 及磁性和晶化量 ω % 测量结果如表 1 所示。

2 晶化相磁矩的计算

用低频脉冲磁场处理后的非晶 $Fe_{78}Si_9B_{13}$ 合金,采 用穆斯堡尔谱、TEM 等手段观察试样的微结构,发现 只有 α -Fe(Si)的单相纳米晶体析出^[12],因此,晶化相 中只能存在 α -Fe 和 α -Fe-Si 两种晶胞。

2.1 α-Fe 晶胞磁矩的计算

α-Fe 晶胞磁矩的计算参照文献[13]。图 1 为 α-Fe

表 1 脉冲磁场处理前后试样的磁性和晶化量 Table 1 Magnetism and crystalline amount of the samples

before and after pulse magnetic field treatment								
Sample	$H/kA \cdot m^{-1}$	<i>f</i> /Hz	t/s	ω /%	$M_{\rm s}/{\rm A}\cdot{\rm m}^2\cdot{\rm kg}^{-1}$	$M_{\rm r}/{\rm A}\cdot{\rm m}^2\cdot{\rm kg}^{-1}$		
1	-	-	-	-	192.3	18.48		
2	24	40	300	4.014	200.6	1.724		
3	22.4	40	300	3.809	205.7	5.191		
4	24	40	240	3.802	202.1	8.793		
5	24	35	300	3.873	200.7	8.577		

基金项目:国家自然科学基金(50771025);高等学校博士学科点专项科研基金(20020145009)

作者简介:周迎春,女,1962年生,博士生,东北大学理学院,辽宁 沈阳 110004,电话: 0416-4199590, E-mail: zych701@sina.com; 通讯作者: 晁月盛,博士生导师, E-mail: yschao@mail.neu.edu.cn

收稿日期: 2008-10-15

晶胞模型,它属于 A_2 型结构。晶格常数 $a_0 = 0.286$ 64 nm,晶胞内原子排布与实验键距如图 1 所示,其中 A 表示 Fe₁- Fe₂ 的键, B 表示 Fe₂- Fe₂ 的键。

2.1.1 实验键距值和等同键数

实验键距值:

 $D_{n\text{A}}^{\text{Fe-Fe}} = \frac{\sqrt{3}}{2}a_0 = 0.248 \ 24 \text{ nm}$ $D_{n\text{B}}^{\text{Fe-Fe}} = a_0 = 0.286 \ 64 \text{ nm}$

等同键数 I_{α} 可按公式 $I_{\alpha} = I_{M} \cdot I_{S} \cdot I_{K}$ 计算, I_{M} 为参 考原子数目; I_{S} 为参考原子的对称性; 当成键两原子 是同类原子时 $I_{K} = 1$, 异类原子时 $I_{K} = 2$ 。

$$\begin{split} I_{A} &= I_{M}^{A} I_{S}^{A} I_{K}^{A} = 1 \times 8 \times 1 = 8 \\ I_{B} &= I_{B}^{B} I_{S}^{B} I_{K}^{B} = 1 \times 6 \times 1 = 6 \\ \end{split}$$
$$\begin{split} \mathfrak{W} \mathbb{E} \widehat{\mathcal{D}} \widehat{\mathcal{R}} \mathbb{E} : \\ D_{nA}^{\text{Fe-Fe}} &= 2R_{\text{Fe}}(1) - \beta \lg n_{A} \\ D_{nB}^{\text{Fe-Fe}} &= 2R_{\text{Fe}}(1) - \beta \lg n_{B} \end{split}$$

式中, β 是一个参数, 其取值依赖于最强键 n_A 的值, 当 $n_A < 0.25$ 或 $n_A > 0.75$ 时, $\beta = 0.071$ 0 nm; 当 $0.30 \le n_A \le 0.70$ 时, $\beta = 0.060$ 0 nm; 当 $n_A = 0.25 + \varepsilon$ 或 $0.75 - \varepsilon$ ($0 < \varepsilon < 0.05$)时, $\beta = 0.071$ 0 -0.22ε nm。

2.1.2 最强键 nA 的值

按电中性的原则,一个晶胞中全部原子提供的共价电子总数 $\sum_{j} n_{cj}$ 应该等于晶胞内全部共价键上的共

用电子总数 $n_{A} \sum_{\alpha} I_{\alpha} r_{\alpha}$,于是晶胞内电荷守恒方程为:

 $\sum_{j} n_{\rm cj} = n_{\rm A} \sum_{\alpha} I_{\alpha} r_{\alpha}$

式中, $\sum_{j} n_{cj}$ 杂阶选定后可直接从杂化表中查到, r_{α} 可

由下式求出:

$$\lg r_{\alpha} = \lg \frac{n_{\alpha}}{n_{\rm A}} = \lg n_{\alpha} - \lg n_{\rm A} = \left[D_{n\rm A}^{\rm Fe-Fe} - D_{n\rm B}^{\rm Fe-Fe} \right] / \beta$$

代入电荷守恒方程后求出最强键 n_A的值。

Fig.1 Unit cell of α-Fe

2.1.3 理论键距值和键距差 理论键距: $\overline{D}_{nA}^{\text{Fe-Fe}} = 2R_{\text{Fe}}^{\sigma}(1) - \beta \lg n_A$ $\overline{D}_{nB}^{\text{Fe-Fe}} = 2R_{\text{Fe}}^{\sigma}(1) - \beta \lg n_B$ 键距差 $\Delta D_{n\alpha}$ 计算: $\Delta D_{n\alpha} = \left| D_{n\alpha} - \overline{D}_{n\alpha} \right|$

对于结构比较复杂的非晶合金,BLD 法往往给出 不只一个符合 $\Delta D_{n\alpha} = \left| D_{n\alpha} - \overline{D}_{n\alpha} \right| \leq 0.005$ nm 要求的结 果,如何从这些结果中挑选出最为可能的一组解?可 从原子的磁矩值、导电性、熔点等的实验值与 BLD 法 的计算值符合得最好的结果优先考虑,并在杂阶表中 选出相应的原子杂阶。

2.1.4 原子的平均磁矩

根据磁矩计算公式:

$$m_{\sigma}^{T} = \frac{g}{2} \sum m_{\sigma}^{3d}$$

则 α-Fe 晶胞的总磁矩为:

$$m_{\rm Fe}^{\rm 3d} = \frac{g}{2} (m_{\rm Fe_1}^{\rm 3d} + m_{\rm Fe_2}^{\rm 3d})$$

式中, g 为光谱分裂因子, 其值为 2.17。α-Fe 晶胞内 一个原子的平均磁矩为:

$$\overline{m_{\alpha-\text{Fe}}^{3\text{d}}} = \frac{g}{2} (m_{\text{Fe}_1}^{3\text{d}} + m_{\text{Fe}_2}^{3\text{d}}) / 2$$

将计算所得各项结果,汇总成 α-Fe 的价电子结构表, 如表 2 所示。

2.2 *α*-Fe-Si 晶胞磁矩的计算

Si 原子置换 Fe 原子后形成置换固溶体^[14],图 2 为 α -Fe-Si 晶胞模型。取 α -Fe 的晶格常数 a=0.286 64 nm 作计算参数,晶胞内原子排布与实验键距如图 2 所示,其中 A 为 Fe₁-Si 的键,B 为 Fe₁-Fe₂ 的键,C 为 Fe₂-Si 的键,D 为相邻两个晶胞 Fe₁-Fe₁ 的键(图中未 能画出)。实验键距为:

$$D_{nA}^{\text{Fe}_{1}-\text{Si}} = \frac{\sqrt{3}}{2}a = 0.248 \text{ 24 nm}$$

$$I_{A} = 1 \times 4 \times 2 = 8$$

$$D_{nB}^{\text{Fe}_{1}-\text{Fe}_{2}} = \frac{\sqrt{3}}{2}a = 0.248 \text{ 24 nm}$$

$$I_{P} = 1 \times 4 \times 2 = 8$$

	表 2	α-Fe 的价电子结构	
•		• • • •	

141	Jie 2	valence	elections	in uctures of	a-re
Fe:A	:A8 $R(1)=0.111$ 87 nm		m $n_{\rm c}=3$	3.5955	
Bond name	I_{α}	$D_{n\alpha}/nm$	$\overline{D}_{nlpha}/\mathrm{nm}$	nα	$\Delta D / \times 10^{-4} \mathrm{nm}$
$D_{n\mathrm{A}}^{\mathrm{Fe-Fe}}$	8	0.248 24	0.248 71	0.383 54	4.71
$D_{n\mathrm{B}}^{\mathrm{Fe-Fe}}$	6	0.286 64	0.287 11	0.087 86	4.71
$\beta = 0$	0.06	$\sigma_{\rm N}$ =	= 3 1	$\overline{m_{\alpha-\mathrm{Fe}}^{\mathrm{3d}}} = 2.608$	88 µB

图 2 *α*-Fe-Si 晶胞 Fig.2 Unit cell of *α*-Fe-Si

 $D_{nC}^{\text{Fe}_2-\text{Si}} = 0.286\ 64\ \text{nm}$

 $I_{\rm C} = 0.5 \times 6 \times 2 = 6$ $D_{n{\rm D}}^{{\rm Fe}_1 - {\rm Fe}_1} = 0.286 \ 64 \ {\rm nm}$

$$I_{\rm D} = 1 \times 6 \times 1 = 6$$

α-Fe-Si 晶胞的总磁矩为:

$$m_{\rm Fe}^{\rm 3d} = \frac{g}{2} (m_{\rm Fe_1}^{\rm 3d} + 0.5 m_{\rm Fe_2}^{\rm 3d})$$

α-Fe-Si 晶胞内一个原子的平均磁矩为:

$$\overline{m_{\alpha-\text{Fe}}^{\text{3d}}} = \frac{g}{2} (m_{\text{Fe}_1}^{\text{3d}} + 0.5m_{\text{Fe}_2}^{\text{3d}})/2$$

将计算所得各项结果,汇总成 α-Fe-Si 的价电子结构 表,如表 3 所示。

2.3 晶化相总磁矩的计算

根据 Fe₇₈Si₉B₁₃ 非晶合金中原子的比例,以及各个 晶胞铁原子对磁矩的贡献,得出总磁矩的经验公式:

 $m_{3d}(晶化相) = (\overline{m_{\alpha - Fe}^{3d}} \cdot C^{\alpha - Fe} + \overline{m_{\alpha - Fe - Si}^{3d}} \cdot C^{\alpha - Fe - Si})/C^{Fe}$ 式中, $C^{\alpha - Fe}$ 、 $C^{\alpha - Fe - Si} \to \alpha$ -Fe、 α -Fe-Si 两种晶胞中 Fe 原子数, $C^{Fe} \to Fe$ 的原子总数。再根据每个晶胞中原 子的比例,得出以下 C 值计算的经验公式:

$$C^{\alpha\text{-Fe-Si}} = 9 \times \frac{n_{\text{A}}^{\alpha\text{-Fe-Si}}}{n_{\text{A}}^{\alpha\text{-Fe-Si}} + n_{\text{A}}^{\alpha\text{-Fe}}} \times 3$$
$$C^{\alpha\text{-Fe}} = 78 - C^{\alpha\text{-Fe-Si}}$$

表 3 α-Fe-Si的价电子结构

Table	5	valence el	ectron stru	ctures of a	z-Fe-Si
Fe ₁ :A1	Fe ₁ :A10 $R(1)=0.1$		09 19 nm $n_c=3.792$		3.792 3
Fe ₂ :A8	3	<i>R</i> (1)=0.111 87 nm		$n_{\rm c}$ =3.595 5	
Si:A5		<i>R</i> (1)=0.117 00 nm		$n_{\rm c}$ =3.903 8	
Bond name	I_{α}	$D_{n\alpha}/nm$	$\overline{D}_{n\alpha}/\mathrm{nm}$	n_{α}	$\Delta D / \times 10^{-3} \mathrm{nm}$
$D_{n\mathrm{A}}^{\mathrm{Fe_1}-\mathrm{Si}}$	8	2.482 4	0.246 93	0.451 25	1.32
$D_{n\mathrm{B}}^{\mathrm{Fe_1}-\mathrm{Fe_2}}$	8	2.482 4	0.246 93	0.370 61	1.32
$D_{n\mathrm{C}}^{\mathrm{Fe_2}}$ -Si	6	2.866 4	0.285 33	0.114 57	1.32
$D_{n\mathrm{D}}^{\mathrm{Fe}_{1}-\mathrm{Fe}_{1}}$	6	2.866 4	0.285 33	0.076 60	1.32
$\beta = 0.06$		$\sigma_{\rm N} = 610$	$\overline{m_{\alpha-\mathrm{F}}^{\mathrm{3d}}}$	$\frac{1}{e-Si} = 2.336$	33 µB

把相应数据代入计算出晶化相总磁矩 *m*_{3d}(晶化相)为 2.565 53 μB。

3 非晶相磁矩的计算

基于非晶合金近程有序结构模型^[15],将非晶合金 宏观近似按晶体结构模型处理,但微观上电子结构不 同,计算了非晶相的磁矩。

3.1 α-Fe 晶胞磁矩的计算

非晶相 α-Fe 晶胞磁矩的计算结果如表 4 所示。

3.2 α-Fe-Si 晶胞磁矩的计算

非晶相 α-Fe-Si 晶胞磁矩的计算结果如表 5 所示。

3.3 *α*-Fe-B 晶胞磁矩的计算

B 原子进入 Fe 原子的间隙,与 Fe 原子形成间隙 固溶体^[16],图 3 为 α-Fe-B 晶胞模型。晶格常数 a_B 为 0.269 998 nm, c_B 为 0.365 172 nm。按着 α-Fe-C 晶胞 价电子结构类似的计算方法^[17], α-Fe-B 晶胞的总磁 矩为:

$$m_{\rm Fe}^{\rm 3d} = \frac{g}{2} (m_{\rm Fe_1}^{\rm 3d} + 2m_{\rm Fe_2}^{\rm 3d} + m_{\rm Fe_3}^{\rm 3d})$$

α-Fe-B 晶胞内一个 Fe 原子的平均磁矩为:

$$\overline{m_{\alpha-\text{Fe}}^{3\text{d}}} = \frac{g}{2} (m_{\text{Fe}_1}^{3\text{d}} + 2m_{\text{Fe}_2}^{3\text{d}} + m_{\text{Fe}_3}^{3\text{d}}) / 4$$

将计算所得各项结果,汇总成非晶相 α-Fe-B 的价 电子结构表,如表 6 所示。

3.4 α-Fe-Si-B 晶胞磁矩的计算

图 4 为 α-Fe-Si-B 晶胞模型。晶格常数 a_B为 0.269

表 4 非晶相 α -Fe 晶胞磁矩的计算结果 Table 4 Computed results of the magnetic moment of the unit call of amorphous phase α -Fe

unit cen of amorphous phase a-re							
Fe:A9		R(1)=0	.110 59 nm	$n_{\rm c}$ =3.774 3			
Bond name	I_{α}	$D_{n\alpha}/nm$	$\overline{D}_{n\alpha}/\mathrm{nm}$	n_{α}	$\Delta D / \times 10^{-3} \mathrm{nm}$		
$D_{n\mathrm{A}}^{\mathrm{Fe_1}-\mathrm{Si}}$	8	0.248 24	0.244 89	0.402 61	3.35		
$D_{n\mathrm{B}}^{\mathrm{Fe_1}-\mathrm{Fe_2}}$	6	0.286 64	0.283 29	0.092 23	3.35		
$\beta = 0.06$		$\sigma_{\rm N}=3$		$\overline{m_{\alpha-{\rm Fe}}^{\rm 3d}} = 2.414\ 88\ \mu{\rm B}$			

表 5 非晶相 α-Fe-Si 晶胞磁矩的计算结果 Table 5 Computed results of the magnetic moment of the

unit cell of amorphous phase *a*-Fe-Si

unit cen of amorphous phase a-re-si						
Fe ₁ :A10 $R(1)=0.109 \ 19 \ nm$ $n_c=3.972 \ 3$					$n_{\rm c}$ =3.972 3	
Fe ₂ :A11		R(1)=	0.107 52 ni	n	$n_{\rm c}$ =4.207 4	
Si:A5		R(1)=	0.117 00 ni	n	nc=3.903 8	
Bond name	I_{α}	$D_{n\alpha}/\mathrm{nm}$	$\overline{D}_{n\alpha}/\mathrm{nm}$	n_{α}	$\Delta D / \times 10^{-3} \mathrm{nm}$	
$D_{n\mathrm{A}}^{\mathrm{Fe_1}-\mathrm{Si}}$	8	2.482 4	0.243 95	0.505 92	4.29	
$D_{n\mathrm{B}}^{\mathrm{Fe_1} ext{-}\mathrm{Fe_2}}$	8	2.482 4	0.243 95	0.351 63	4.29	
$D_{n\mathrm{C}}^{\mathrm{Fe_2}-\mathrm{Si}}$	6	2.866 4	0.282 35	0.108 71	4.29	
$D_{n\mathrm{D}}^{\mathrm{Fe_1}-\mathrm{Fe_1}}$	6	2.866 4	0.282 35	0.085 89	4.29	
$\beta = 0.06$ $\sigma_{\rm N} = 610$ $\overline{m_{\alpha}^{\rm 3d}}_{\rm Fe-Si} = 2.11499$				114 99 μB		

图 3 α-Fe-B 晶胞 Fig.3 Unit cell of α-Fe-B

表 6 非晶相 α-Fe-B 晶胞磁矩的计算结果 Table 6 Computed results of the magnetic moment of the unit cell of amorphous phase α-Fe-B

Fe ₁ :A1	Fe ₁ :A13 $R(1)=0.110$		0.110 408	nm $n_{\rm c}$ =4.690 5		
Fe ₂ :A12		<i>R</i> (1)=0).105 89 nm	1 <i>n</i> .	$n_{\rm c}$ =4.436 7	
Fe ₃ :A10 <i>R</i> (1			$R(1)=0.109 \ 19 \ \text{nm}$ $n_c=3.392 \ 3$			
B:A5		R(1)=0	0.079 80 nr	$n_{\rm c}=2.897~0$		
Bond name	Iα	$D_{n\alpha}/\mathrm{nm}$	$\overline{D}_{n\alpha}/\mathrm{nm}$	nα	$\Delta D / \times 10^{-3} \mathrm{nm}$	
$D_{n\mathrm{A}}^{\mathrm{Fe_1}-\mathrm{B}}$	4	0.182 59	0.181 39	1.084 23	1.20	
$D_{n\mathrm{B}}^{\mathrm{Fe_2}-\mathrm{B}}$	8	0.190 92	0.189 72	0.877 53	1.20	
$D_{n\mathrm{C}}^{\mathrm{Fe}_{1}-\mathrm{Fe}_{2}}$	16	0.264 17	0.262 97	0.211 57	1.20	
$D_{n\mathrm{D}}^{\mathrm{Fe}_{1}-\mathrm{Fe}_{3}}$	16	0.264 17	0.262 97	0.179 26	1.20	
$D_{n\mathrm{E}}^{\mathrm{Fe}_1\text{-}\mathrm{Fe}_2}$	8	0.270 00	0.268 80	0.165 16	1.20	
$D_{n\mathrm{F}}^{\mathrm{Fe}_2-\mathrm{Fe}_2}$	8	0.270 00	0.268 80	0.157 37	1.20	
$D_{n\mathrm{G}}^{\mathrm{Fe_3}}$ -B	16	0.325 94	0.324 74	0.012 25	1.20	
$D_{n\mathrm{H}}^{\mathrm{Fe_3} ext{-}\mathrm{Fe_3}}$	2	0.365 17	0.363 97	0.008 90	1.20	
$D_{n\mathrm{I}}^{\mathrm{Fe}_2-\mathrm{Fe}_2}$	4	0.365 17	0.363 97	0.007 19	1.20	
$\beta = 0.071$		$\sigma_{\rm N} = 913$	33	$\overline{m_{\alpha-\text{Fe-B}}^{3\text{d}}} =$	1.753 31 μB	

图 4 α-Fe-Si-B 晶胞 Fig.4 Unit cell of α-Fe-Si-B

998 nm, *c*_B为 0.365 172 nm。按照与 3.3 类似的计算 方法, α-Fe-Si-B 晶胞的总磁矩为:

$$m_{\text{Fe}}^{3\text{d}} = \frac{g}{2} (m_{\text{Fe}_{1}}^{3\text{d}} + 2m_{\text{Fe}_{2}}^{3\text{d}} + m_{\text{Fe}_{3}}^{3\text{d}})$$

 α -Fe-Si-B 晶胞内一个 Fe 原子的平均磁矩为:

$$\overline{m_{\alpha-\text{Fe}}^{\text{3d}}} = \frac{g}{2} (m_{\text{Fe}_1}^{\text{3d}} + 2m_{\text{Fe}_2}^{\text{3d}} + m_{\text{Fe}_3}^{\text{3d}}) / 4$$

将计算所得各项结果,汇总成 α-Fe-Si-B 的价电子 结构表,如表 7 所示。

3.5 非晶相总磁矩的计算

根据非晶 Fe₇₈Si₉B₁₃ 合金中原子的比例,以及各个 晶胞铁原子对磁矩的贡献,得出总磁矩的经验公式:

$$m_{3d}(\ddagger \blacksquare \ddagger) = (\overline{m_{\alpha-\text{Fe}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}} + \frac{\overline{m_{\alpha-\text{Fe}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}} + \overline{m_{\alpha-\text{Fe}-\text{B}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}} + \frac{\overline{m_{\alpha-\text{Fe}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}}}{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{B}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{B}}} + \frac{\overline{m_{\alpha-\text{Fe}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}}}{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}}} + \frac{\overline{m_{\alpha-\text{Fe}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}}}{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}}} + \frac{\overline{m_{\alpha-\text{Fe}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}}}{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}}} + \frac{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}}}}{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}}} + \frac{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}}}}{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}}} + \frac{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}-\text{Si}}} + \frac{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{Si}}^{3\text{d}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}-\text{Si}}}}{\overline{m_{\alpha-\text{Fe}-\text{Si}-\text{Si}^{3\text{d}}}} \cdot C^{\alpha-\text{Fe}-\text{Si}-\text{Si}-\text{Si}-\text{Si}-\text{Si}}}} + \frac{\overline{m_{\alpha-\text{Fe}-\text{Si$$

式中: $C^{\alpha-\text{Fe}} \ C^{\alpha-\text{Fe-Si}} \ C^{\alpha-\text{Fe-Si-B}} \ \beta \alpha-\text{Fe} \ \alpha-\text{Fe-Si}$ $\alpha-\text{Fe-B} \ \alpha-\text{Fe-Si-B} \ 4 \ \mu ahhh = Fe 原子数, C^{\text{Fe}} \ \beta Fe$ 的原子总数。再根据每个晶胞中原子的比例,得出以下 C值计算的经验公式:

$$C^{\alpha\text{-Fe-Si-B}} = 9 \times \frac{n_A^{\alpha\text{-Fe-Si-B}}}{n_A^{\alpha\text{-Fe-Si-B}} + n_A^{\alpha\text{-Fe-Si}}} \times 3$$
$$C^{\alpha\text{-Fe-B}} = 13 \times \frac{n_A^{\alpha\text{-Fe-Si-B}} + n_A^{\alpha\text{-Fe-Si}}}{n_A^{\alpha\text{-Fe-Si}} + n_A^{\alpha\text{-Fe-B}}} \times 4$$
$$C^{\alpha\text{-Fe-Si}} = 9 \times \frac{n_A^{\alpha\text{-Fe-Si}}}{n_A^{\alpha\text{-Fe-Si}} + n_A^{\alpha\text{-Fe-Si-B}}} \times 3$$
$$C^{\alpha\text{-Fe}} = 78 - C^{\alpha\text{-Fe-Si-B}} - C^{\alpha\text{-Fe-Si}} - C^{\alpha\text{-Fe-Si-B}}$$

将相应数据代入得出非晶相的总磁矩 *m*_{3d}(非晶相) 为 1.894 99 μB。

4 双相合金磁矩的计算

双相合金由晶化相和剩余非晶两部分组成,其磁 矩可按下式计算:

 $m_{3d} = m_{3d}$ (晶化相)× ω %+ m_{3d} (非晶相)×(1- ω %) 式中, ω %为晶化相的质量分数;(1- ω %)为剩余非晶 相的质量分数。计算值与实测值的误差按下式算出:

误差=
$$\frac{m_{3d}(\text{test}) - m_{3d}(\text{cal.})}{m_{3d}(\text{test})} \times 100\%$$

计算结果列入表 8 中。

从表 8 数据可以看出,用 BLD 方法计算非晶 Fe₇₈Si₉B₁₃ 合金磁致低温纳米晶化前后的磁矩,其理论 计算值与实验测定值的误差小于 7%,满足一级近似的 要求。

表 7 α -Fe-Si-B 的价电子结构						
Table	7 1	Valence ele	ctron strue	ctures of a	-Fe-Si-B	
Si:A4		R(1)=0	0.117 00 nn	n <i>n</i> c=	=3.663 8	
Fe ₂ :A	14	<i>R</i> (1)=0	0.102 02 nn	n <i>n</i> c=	=4.980 6	
Fe ₃ :A	13	<i>R</i> (1)=0	0.104 08 nn	n <i>n</i> c=	=4.690 5	
B:A6		<i>R</i> (1)=0	0.079 80 nm	$n n_c =$	3.000 0	
Bond name	Iα	$D_{n\alpha}/\mathrm{nm}$	$\overline{D}_{n\alpha}/\mathrm{nm}$	n_{α}	$\Delta D / \times 10^{-4}$ nm	
$D_{n\mathrm{A}}^{\mathrm{Si-B}}$	4	0.182 59	0.182 43	1.593 93	1.61	
$D_{n\mathrm{B}}^{\mathrm{Fe_2}-\mathrm{B}}$	8	0.190 92	0.190 76	0.748 39	1.61	
$D_{n\mathrm{C}}^{\mathrm{Si-Fe_2}}$	16	0.264 17	0.264 01	0.232 45	1.61	
$D_{n\mathrm{D}}^{\mathrm{Fe_3}-\mathrm{Si}}$	8	0.270 00	0.269 84	0.205 72	1.61	
$D_{n\mathrm{E}}^{\mathrm{Fe_3}}$ -Fe ₂	16	0.264 17	0.264 01	0.152 88	1.61	
$D_{n\mathrm{F}}^{\mathrm{Fe}_2\mathrm{-Fe}_2}$	8	0.270 00	0.269 84	0.118 38	1.61	
$D_{n\mathrm{G}}^{\mathrm{Fe_3}-\mathrm{B}}$	16	0.325 94	0.325 78	0.010 03	1.61	
$D_{n\mathrm{H}}^{\mathrm{Fe_3} ext{-}\mathrm{Fe_3}}$	2	0.365 17	0.365 01	0.006 18	1.61	
$D_{n\mathrm{I}}^{\mathrm{Fe}_2-\mathrm{Fe}_2}$	4	0.365 17	0.365 01	0.005 41	1.61	
$\beta = 0.071$ $\sigma_{\rm N} = 2680$ $\overline{m_{\alpha-{\rm Fe-Si-B}}^{\rm 3d}} = 1.210\ 97\ \mu{\rm B}$						

表 8 双相合金的磁矩及误差 Table 8 Magnetic moment and error of binary-phase alloys

Sample	ω /%	$m_{\rm 3d}$ (test)/ μB	m_{3d} (cal.)/ μB	Error/%
1	0	1.928 87	1.894 99	1.76
2	4.014	2.012 12	1.921 91	4.48
3	3.809	2.063 28	1.920 53	6.92
4	3.802	2.027 17	1.920 48	5.26
5	3.873	2.013 13	1.920 96	4.58

5 结 论

根据非晶合金近程有序的结构模型,将非晶合金 宏观近似按晶体结构模型处理,但微观上电子结构不 同,借助于固体与分子经验电子理论中的 BLD 方法, 计算了非晶合金 Fe₇₈Si₉B₁₃ 磁致低温纳米晶化前后的 磁矩,其理论计算值与实验测定值的误差小于 7%,说 明在一级近似下,从价电子层次上计算非晶的磁矩是 可以实现的,这对于优化非晶 Fe₇₈Si₉B₁₃ 合金的软磁性 能将具有理论指导意义。

参考文献 References

 Chao Yuesheng(晁月盛), Zhang Yanhui(张艳辉). Functional Materials Physics(功能材料物理)[M]. Shenyang: Northeastern University Press, 2006

- [2] Lu Zhichao(卢志超), Li Deren(李德仁), Zhou Shaoxiong(周 少雄). Advanced Materials Industry(新材料产业)[J], 2004, 11:
 46
- [3] Huang Jian(黃 剑), Yan Biao(严 彪), Yang Lei(杨 磊).
 Shanghai Nonferrous Metals(上海有色金属)[J], 2005, 26(3):
 114
- [4]. Lu Ke(卢 柯), Wang Jingtang(王景唐), Dong Lin(董 林). Acta Metallurgica Sinica(金属学报)[J], 1991, 29: B31
- [5] Lu K, Wang J T, Wang W T et al. J Appl Phys[J], 1991, 69: 522
- [6] Datta A, Masumoto I, Sazukik. Proc 4th Int Conf on Rapidly Quenched Metals[C]. Sendai: Japan Institute of Metals, 1981: 1007
- [7] Hasegawa R, Ramanan R V, Fish G E. J Appl Phys[J], 1982, 153: 2276
- [8] Chao Yuesheng(晁月盛), Li Mingyang(李明扬), Geng Yang(耿 岩). Acta Physica Sinica(物理学报)[J], 2004, 53(10): 3453
- [9] Chao Yusheng(晁月盛), Zhang Yanhui(张艳辉), Guo Hong(郭 红) et al. Acta Metallurgica Sinica(金属学报)[J], 2007, 43(3): 231
- [10] Zhang Yahhui(张艳辉), Chao Yuesheng(晁月盛). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2007, 36(8): 1469
- [11] Wang Ying(王 迎), Wang Erfu(王尔福). Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2007, 36(9): 1665
- [12] Zhou Yingchun(周迎春), Chao Yuesheng(晁月盛). Journal of Functional Materials(功能材料)[J], 2007, 38(12): 36
- [13] Zhang Ruilin(张瑞林). Empirical Electron Theory of Solids and Molecules(固体与分子经验电子理论)[M]. Changchun: Jilin Science and Technology Press, 1993: 313
- [14] Zhou Tiejun(周铁军), Wang Dunhui(王敦辉), Zhang Jianrong(章建荣). Acta Physica Sinica(物理学报)[J], 1997, 46(11): 2250
- [15] Guo Yicheng(郭贻诚), Wang Zhenxi(王震西). The Physics of Noncrystal State(非晶态物理学)[M]. Beijing: Science Press, 1984: 175
- [16] Lü Jun(吕 俊), Chen Xiaohu(陈晓虎), Chen Xiaomin(陈晓闽) et al. Metallic Functional Materials(金属功能材料)[J], 2006, 13(2):6
- [17] Liu Zhilin(刘志林). Valence Electron Structure and Composition Design(合金价电子结构与成分设计)[M]. Changchun: Jilin Science and Technology Press, 2002

Theoretical Calculation of Magnetic Moment of Fe₇₈Si₉B₁₃ Amorphous Alloy Nanocrystallized by Low Frequency Pulse Magnetic Field

Zhou Yingchun^{1,2}, Zhang Qun², Chao Yuesheng¹

(1. Northeastern University, Shenyang110004, China)(2. Liaoning University of Technology, Jinzhou 121001, China)

Abstract: The amorphous Fe₇₈Si₉B₁₃ alloy was treated by low frequency pulse magnetic field (LFPMF) and nanocrystallized at a low temperature. The microstructures and the magnetic properties of the untreated and treated alloys were analyzed by Mössbauer spectra and LDJ9600 vibrating sample magnetometer (VSM). The valence electron structures and the magnetic moment of the unnanocrystallized and nanocrystallized amorphous alloys were calculated using the method of Bond Length Difference (BLD) of the Empirical Electron Theory (EET) of solids and molecules. The error of the computed value in theory and experimental value of the magnetic moment is less than 7%, which satisfies the demand of first approximation, indicating that it can be realized that magnetic moment of amorphous alloy is calculated on the valence electron level.

Key words: amorphous Fe78Si9B13 alloys; low frequency pulse magnetic field; valence electron structure; magnetic moment

Biography: Zhou Yingchun, Candidate for Ph. D., College of Science, Northeastern University, Shenyang 110004, P. R. China, Tel: 0086-416-4199590, E-mail: zych701@sina.com; Corresponding Author: Chao Yuesheng, Supervisor of Ph. D. Candidate, E-mail: yschao@mail.neu.edu.cn