热处理工艺对微量 Mn、Zr 作用下的高纯 Al-Cu-Mg-Ag 合金性能的影响

朱宝宏,熊柏青,张永安,熊益民

(北京有色金属研究总院 有色金属材料制备加工国家重点实验室,北京 100088)

摘 要:研究了固溶处理和时效处理对微量 Mn、Zr 作用下的高纯 Al-Cu-Mg-Ag 合金性能的影响,结果表明:合金在 520~525 时,可以得到较好的力学性能,固溶时间对性能的影响不大。合金在 160 下时效 12 h 可以达到峰时效, 而在 180 下达到峰时效的时间仅需要 4 h。向 Al-Cu-Mg-Ag 中添加微量 Mn、Zr 元素可以大幅度的提高合金的延伸率, 但 Mn 元素的添加却降低合金的抗拉强度,而 Zr 元素则大幅度的提高了合金的抗拉强度。在合金的耐热性能方面,微 量 Mn、Zr 元素的添加均显著提高 Al-Cu-Mg-Ag 合金的热稳定性。

关键词:Al-Cu-Mg-Ag;峰时效;固溶处理;时效处理

中图法分类号:TG156.94 文献标识码:A 文章编号:1002-185X(2010)01-0144-05

Al-Cu-Mg-Ag 合金是在 Al-Cu-Mg 合金基础上通 过添加微量 Ag 元素而发展起来的。研究发现,微量 Ag 元素能够改变 Al-Cu-Mg 合金的时效析出过程,抑 制原本在 Al-Cu-Mg 合金的(100)面上析出的 θ'相 $n \theta h$,转而在(111)面上析出一种热稳定性更加良 好的 Ω 相^[1-4]。关于 Ω 相的成分及结构一直存在着争 $议^{[5-9]}$,比较普遍的观点认为 Ω 相与 θ 相具有近似的化 学成分,均为 Al₂Cu。Al-Cu-Mg-Ag 合金优良的中高 温稳定性能得益于合金中弥散分布的 Ω 相的高抗粗化 能力。随着航空航天工业的快速发展,对铝合金的要 求也从过去的轻质高强提高到了轻质高强、高损伤容 限的高度上。而 Fe、Si 等杂质的含量对合金的损伤容 限性能具有重要影响。有报道指出,当Fe、Si杂质含 量降低到 0.1%以下时, 合金的性能, 尤其是合金的抗 损伤容限性能将会有大幅度的提高^[10]。文献[11]研究 指出,高纯Al-Cu-Mg-Ag合金具有较高的力学性能和 良好的断裂韧性,能够应用于飞机上蒙皮、耐热部件 等方面,在航空航天领域具有广泛的应用前景。

目前,国内外针对 Al-Cu-Mg-Ag 合金的研究主要 集中在 Ag 对合金时效过程的影响以及该系合金抗应 力腐蚀性能和疲劳性能等方面^[11-15]。本研究在控制 Fe、Si 杂质元素含量的基础上通过添加微量 Mn、Zr 元素,制备出高损伤容限型 Al-Cu-Mg-Ag 合金,并且 研究了固溶处理及时效处理对该合金组织及性能的影 响,从而为探索和积累有关该系列合金的基础数据提 供参考。

1 实 验

表1是合金的化学成分。合金采用真空熔炼及金 属模浇铸制备获得。合金铸锭在520 下进行24h均 匀化处理,并挤压成板带,挤压比12:1。DSC试验在 DSC2010 热分析仪上进行,加热速度为10 /min。挤 压态合金经过固溶处理后分别在160和180 下进行 不同时间时效处理。合金的显微组织分别在Zeiss Axiovert 200 MAT光学显微镜、JEM-2000FX透射电 镜(TEM)下进行观察,材料的力学性能测试在日本 岛津 AG-50kNE 万能材料试验机上进行,屈服前的拉 伸速度为1 mm/min,产生屈服后的拉伸速度为5 mm/min。峰时效状态合金分别在150、175、200和 225 下热暴露100h后测试其室温力学性能,研究合 金的热稳定性。

 Table 1
 Chemical composition of Al-Cu-Mg-Ag alloys (ω/%)

Alloy	Chemical composition								
	Cu	Mg	Ag	Mn	Zr	Al			
A1	4.74	0.50	0.30	-	-	Bal.			
A2	4.74	0.50	0.29	0.3	-	Bal.			
A3	4.75	0.49	0.30	-	0.15	Bal.			

收稿日期:2009-01-10

作者简介:朱宝宏,男,1974年生,硕士,高级工程师,北京有色金属研究总院有色金属材料制备加工国家重点实验室,北京100088, 电话:010-82241161,E-mail:zhubh@grinm.com

2 实验结果

2.1 固溶处理对合金显微组织及力学性能的影响

图 1 是经过挤压后的 A1 合金的 DSC 曲线。由图 可知,合金在 530 左右开始出现吸热峰,表明合金 中的初生相发生了回溶。考虑到微量 Mn、Zr 元素的 添加可能会对 Al-Cu-Mg-Ag 合金的固溶温度产生一定 的影响,因此选定固溶温度在 530 左右。

图 2 是 3 种合金分别在 520、525、530 和 535 下固溶不同时间并在 160 下时效 24 h 后的力学性 能。可以看出,固溶温度和时间对A1合金和A2合金 的抗拉强度影响有限,而对 A3 合金影响大于 A1、A2 合金。随着固溶温度和时间的变化, A1 与 A2 合金的 抗拉强度均在小于 10 MPa 范围内波动; A3 合金在不 同固溶温度、固溶时间下的波动较大,超过了20 MPa。 3 种合金的延伸率受固溶温度的影响比较大;在同一 固溶温度下,固溶时间对延伸率有一定的影响,但其 影响不及固溶温度。随着固溶温度的升高,合金的延 伸率降低;合金只有在较高温度下固溶较长时间(如 535 下固溶 2 h) 时, 延伸率才会出现明显的下降趋 势。从强度和延伸率 2 个指标来看, A1 合金比较理想 的固溶制度为 520 下固溶 1~2 h; A2、A3 合金比较 理想的固溶制度为 525 固溶 1.5~2 h。为了保证合金 在固溶过程中一次析出相充分回溶,3种合金的固溶 时间均定为2h。

图 3 是 3 种合金经过上述固溶处理后的金相显微 组织。可以看出,经过固溶处理后,3 种合金中的大 部分一次析出相均得到了有效回溶,但在基体上仍残 留一些尺寸较大的富铜相。与挤压态合金组织相比较, A1 合金固溶后发生了部分再结晶,一部分晶粒呈等轴 状,晶粒尺寸在 300~500 µm 之间(如图 3a 所示); A2 合金和 A3 合金则没有明显的变化(如图 3b,3c 所 示)。

2.2 合金元素对合金性能的影响

图 4a 及 4b 分别是 3 种合金在 520 和 525 固溶 不同时间并在 160 下时效 24 h 后的抗拉强度和延伸 率。可见,当固溶温度一定时,3 种合金的抗拉强度

图 1 A1 合金的 DSC 曲线

Fig.2 Effect of solution treatment time on mechanical properties for the three alloys at different temperatures: (a) A1 alloy, (b) A2 alloy, and (c) A3 alloy

图 3 3 种合金经过不同温度固溶 2 h 后的金相显微组织

Fig.3 Microstructures of three alloys after different solution treatment for 2 h: (a) A1 alloy at 520 , (b) A2 alloy at 525 and (c) A3 alloy, at 525

受固溶时间的影响较小。其中,A1合金的强度为470~ 480 MPa 范围内, A2 合金的强度为 450 MPa 左右, A3 合金的平均强度为 510~520 MPa。以上数据表明, 微量元素 Mn 和 Zr 对 Al-Cu-Mg-Ag 合金抗拉强度的 贡献是不同的,向 Al-Cu-Mg-Ag 合金中添加少量的 Mn 元素,合金的强度约降低 5%,而添加少量的 Zr 元素的 A3 合金的强度则提高了约 9%。在同一固溶温 度下,A1合金的延伸率随着固溶时间的延长呈现下降 的趋势,固溶温度越高,A1 合金的延伸率越低;当 A2 和 A3 合金的固溶温度不超过 525 时,其延伸率 能够比较稳定的保持在一定的水平。和 A1 合金相比 较, A2 和 A3 的延伸率都有了大幅度的提高, 特别是 时, A2和 A3合金比 A1合金 固溶温度不超过 525 的延伸率提高了约 50%, 这表明微量 Mn 元素和 Zr 元素可以大大提高合金的延伸率。

2.3 时效处理对 3 种合金显微组织与性能的影响

图 5 是 3 种合金固溶处理后分别在 160 和 180 下的时效曲线。可见,时效初期,合金强度迅速上升, 160 下时效 10~12 h 时合金到达峰时效。此后随着时 效时间的延长,合金强度先呈现一强度平台,后有一 定程度的降低。随着时效温度的升高,合金时效响应 速度加快。在 180 下只需要 4 h 即可达到峰时效, 且峰值强度基本上与 160 的峰值强度相当。此后随 着时效时间的延长,时效强度降低,且降低程度大于 160 时效处理的合金。合金延伸率在时效初期迅速 下降,随着峰时效的到来,合金延伸率的下降速度减

图 4 3 种合金在 520 和 525 的固溶时间对抗拉强度 和延伸率的影响

图 5 3 种合金的抗拉强度及延伸率随时效时间 的变化关系

Fig.5 UTS and elongation vs ageing time of alloy A1 (a), A2 (b) and A3 (c)

缓,并随着时效时间的延长在一定范围内波动。其中 添加 Mn、Zr 微量元素的 A2、A3 合金的延伸率明显 好于没有添加微量元素的 A1 合金。

2.4 合金热稳定性

表 2 是 3 种合金在 180 时效 4 h 峰时效热处理 后再在不同温度下热暴露 100 h 后的力学性能。从表 2 中可以看出,合金温度在低于 150 时具有较好的 热稳定性;添加 Mn、Zr 微量元素的 A2、A3 合金在 175 下热暴露 100 h 后,和室温性能相比分别下降了 4%和 8%。没有添加微量元素的 A1 合金,性能下降 了约 10%。当热暴露温度低于 200 时,A2、A3 合 金的抗拉强度仍保持在 400 MPa 以上,延伸率也保持 在 10%以上,表明 A2、A3 合金能够长时间在(150~200)

温度下服役。当热暴露温度超过 200 时,A2、A3 合金性能下降较大,但3种合金性能的差别已不很大。 2.5 微观组织

图 6 是 3 种合金在 180 峰时效条件下的 TEM 照 片。可以看出,合金基体上弥散分布着大量的片层状 Ω 析出相,同时也有少量的 θ'相和 θ 相分布在基体上。

表 2 A1、A2 和 A3 合金在不同温度热暴露 100 h 后 的力学性能值

Table 2Mechanical properties of three alloys after exposure
at various temperatures for 100 h

T (A1		A2			A3			
Temperature/	$R_{\rm m}/$	R _{p0.2} /	A/	$R_{\rm m}/$	<i>R</i> _{p0.2}	A/	$R_{\rm m}/$	R _{p0.2} /	A/
	MPa	MPa	%	MPa	MPa	%	MPa	MPa	%
25	480	455	9.3	450	425	15	510	470	14
150	455	430	5.6	455	430	13.4	510	480	11.5
175	425	385	6.2	430	390	12.8	470	410	10.9
200	370	280	6.3	395	315	12	400	300	12.7
225	330	215	8.3	345	220	14.5	345	235	14.9

图 6 A1、A2 和 A3 合金在 180 时效 4 h 的<110>方向 沉淀相的明场像

Fig.6 TEM bright field images along <110> direction of alloys aged at 180 for 4 h: (a) A1, (b) A2, and (c) A3

未添加微量元素的 Al-Cu-Mg-Ag 合金中,经过 180 峰时效后,基体上析出的 Ω 相尺寸较大;添加微量 Mn、Zr 元素后, Ω 相数量明显增多, θ '相和 θ 相数量 减少,同时 Ω 相尺寸变得更加细小,有利于提高合金 性能。在含 Mn 的合金中,基体上还生成了一种短棒 状析出相(如图 6b 所示),经能谱分析及电子衍射花 样标定该相为 Al₆Mn 相。含 Zr 合金中生成了细小的 Al₃Zr 粒子。

3 分析与讨论

Al-Cu-Mg 合金的时效析出序列与合金中的 Cu/Mg比有着密切的关系。由 Al-Cu-Mg 合金富 Al 端 的合金相图^[16]可知,当合金 Cu/Mg 比较高时,合金落 在相图中($\alpha + \theta$)和($\alpha + \theta + S$)相区,合金经过固溶时效 处理后,将析出主要强化相 θ '以及少量S相,其析出 序列可以描述为^[17,18]:

 $\alpha_{SSS} \rightarrow GPB \overline{\square}(\vec{u} GP \overline{\square}) \rightarrow \theta'' \rightarrow \theta' + S \rightarrow \theta + S$ 式中, α_{SSS} 代表过饱和固溶体, θ 相即 Al₂Cu 相, 沿合 金(100)Al 析出, *S* 相即为 Al₂CuMg 相。将微量 Ag 元 素加入高 Cu/Mg 比的 Al-Cu-Mg 三元合金, 不仅可以 加速合金的时效响应,还将改变时效析出相的析出顺 序^[9,10]。当时效温度高于 100 时,热稳定性优于 θ' 的 Ω 相将优先沿(111)Al 面析出, 成为 Al-Cu-Mg-Ag 系合金的主要强化相。因此, Al-Cu-Mg-Ag 系合金具 有较高的抗拉强度和耐热性能。

本工作研究的合金的相组成落在了(α + θ + S) 相区,对于铸态 Al-Cu-Mg-Ag 合金,其一次析出相主 要为含铜的 Al₂Cu 相。图 1 中 A1 合金在 530 的吸 热峰表明合金中的一次析出相发生了回溶,有利于在 后续的时效处理中析出细小弥散的相,从而提高合金 性能。

合金中的微量 Mn、Zr 元素提高了合金的再结晶 温度,因此合金在较高温度下固溶时,其微观组织能 够保持热变形加工的细晶组织特征,有利于提高合金 的延伸率。但对于添加微量 Mn 元素的 A2 合金,由 于基体上生成了尺寸较大的棒状 Al₆Mn 相,在合金受 到外力作用时,容易发生应力集中,从而成为裂纹源, 因此室温下合金的性能较低。而添加了 Zr 元素的 A3 合金,由于 Zr 元素容易与 Al 生成弥散细小的 Al₃Zr 相,能够有效钉扎位错运动,因此合金的力学性能明 显高于 Al 合金。

合金在时效初期主要析出 GPB 区,使合金力学性 能迅速提高。随着时效时间的延长,GPB 区溶解,进 而在合金基体上析出大量的 Ω 相和少量的 θ'相,力学 性能进一步提高。当合金达到过时效状态,θ'相逐渐 转变为平衡相 θ 相,同时少量的 Ω 相也可能发生粗化 长大,从而降低合金的力学性能。

可见,热处理合金的时效析出速率与时效温度有 密切关系。当合金在较低温度下进行时效处理时,合 金的强化相析出速率较低,因此合金需要较长时间才 能到达峰时效。提高时效温度,弥散析出相的析出动 力提高,因此合金在180 下仅需要4h便能达到峰 时效。合金在时效过程中仍有少量的θ'相和θ相析出, 随着时效时间的延长,θ'相逐渐与基体脱离共格关系, 转化为θ相,而时效时间的进一步延长,θ相也会发 生粗化和长大,进一步降低合金性能。时效温度越高, 合金力学性能的降低效果就越明显。 Al-Cu-Mg-Ag 合金由于具有良好的耐热性能而得 到了广泛关注。合金的耐热性能与合金中的强化相的 特征有着密切的关系。由于 A1 合金中除了析出大量 的 Ω 相外,还存在少量的 θ '相和 θ 相。当合金在较低 的温度下长时间暴露时,由于 θ '相和 θ 相的热稳定性 不如 Ω 相,因此首先发生粗化、长大,合金性能有所 损失。微量 Mn、Zr 元素的添加抑制了合金中 θ '相和 θ 相的析出而加强了 Ω 相的析出,因此当合金在较低温 度下长时间暴露时,合金性能几乎没有损失。进一步 提高合金的热暴露温度,合金中不但 θ '相和 θ 相发生 粗化和长大, Ω 相也开始发生粗化,合金性能损失较 大。当热暴露时间足够长、温度足够高时, Ω 相和 θ ' 相均转化为平衡相 θ 相,对合金性能起作用的主要是 θ 相,因此表 2 所示的 3 种合金经过 225 热暴露 100 h 后,其力学性能相差不大。

4 结 论

 对于高纯高 Cu/Mg 比的 Al-Cu-Mg-Ag 合金, 理想的固溶制度为 520 固溶 2 h,而对于添加 Mn、 Zr 微量元素的 Al-Cu-Mg-Ag 合金,理想的固溶制度 为 525 固溶 2 h;3 种合金在 160 下需要 12 h 左 右才能达到峰时效,而在 180 下到达峰时效的时间 为 4 h。

 2) 微量 Mn、Zr 元素均能大幅度提高 Al-Cu-Mg-Ag 合金的延伸率,但 Mn 元素使得合金力学性能 降低,而 Zr 元素则大幅度提高合金的抗拉强度。

3) 添加微量 Mn、Zr 元素能够提高 Al-Cu-Mg-Ag

合金的热稳定性能,特别是在温度小于150 时合金 具有效好的热稳定性。

参考文献 References

- Vietz J T et al. Journal of the Institute of Metals[J], 1966, 94(12): 410
- [2] Polmear I J et al. Mater Sci Forum[J], 1996, 217-222(3): 1759
- [3] Zhu Aiwu et al. Acta Materialia[J], 2004, 52: 3671
- [4] Chang C H et al. Materials Chemistry and Physics[J], 2005, 91: 454
- [5] Scott V D et al. Materials Science and Technology[J], 1987, 3: 827
- [6] Muddle B C, Polmear I J. Acta Metall[J], 1989, 37(3): 777
- [7] Shollock B A et al. Scripta Metall Mater[J], 1990, 24: 1239
- [8] Kerry S et al. Metals Science[J], 1984, 18: 289
- [9] Knowles K M et al. Acta Crystal[J], 1988, B44: 207
- [10] Zhang Kun(张 坤) et al. Journal of Aeronautical Materials (航空材料学报)[J], 2006, 26(3): 251
- [11] Alex Cho et al. Materials Science Forum[J], 2006, 519-521:603
- [12] Mukhopadhyay A K. Scripta Materialia[J], 1999, 41(6): 667
- [13] Lumley R N et al. Acta Materialia[J], 2002, 50: 3597
- [14] Lumley R N et al. Scripta Materialia[J], 2004, 50: 1227
- [15] Little D A et al. Corrosion Science[J], 2007, 49: 347
- [16] Ringer S P et al. Acta Materialia[J], 1997, 45(9): 3731
- [17] Khan I N et al. Materials Science and Engineering A[J], 2008, 472: 66
- [18] Ringer S R et al. Acta Materialia[J], 2008, 56: 2147

Effect of Heat Treatments on Properties of High Purity Al-Cu-Mg-Ag Alloy with Trace Mn and Zr

Zhu Baohong, Xiong Baiqing, Zhang Yongan, Xiong Yimin

(State Key Laboratory for Fabrication and Processing of Non-Ferrous Metals, General Research Institute

for Non-Ferrous Metals, Beijing 100088, China)

Abstract: Effects of solid solution heat treatment and aging heat treatment on high purity Al-Cu-Mg-Ag alloys with trace Mn and Zr were investigated. Results show that when the alloys are solid solution treated at 520-525 , the mechanical properties reach up to a relatively high level, and the solid solution time has little effect on the properties. The time to reach peak aging is about 12 h at 160 but only 4 h at 180

. Adding trace Mn and Zr could increase the elongation of Al-Cu-Mg-Ag alloys greatly. However, Mn element could decrease the tensile strength while Zr could increase it significantly. Both Mn and Zr elements can improve the heat resistance of Al-Cu-Mg-Ag alloys markedly. **Key words:** Al-Cu-Mg-Ag; peak ageing; solution treatment; ageing treatment

Corresponding author: Zhu Baohong, Master, Senior Engineer, State Key Laboratory for Fabrication and Processing of Non-Ferrous Metals, General Research Institute for Non-Ferrous Metals, Beijing 100088, P. R. China, Tel: 0086-10-82241161, E-mail: sprayform@grinm.com