熔体快淬 $Zr_{0.9}Ti_{0.1}V_{2.2}$ 合金的微结构与储氢性能

张云龙,李金山,张铁邦,寇宏超,胡 锐,薛祥义

(西北工业大学 凝固技术国家重点实验室, 陕西 西安 710072)

摘 要:为改善 Zr-Ti-V 系列 Laves 相合金的吸氢动力学性能,本研究设计成分为 Zr_{0.9}Ti_{0.1}V_{2.2}的非化学计量比合金并采 用熔体快淬工艺制备合金薄带。研究合金快淬薄带的微观组织与相结构、吸氢动力学、吸放氢 PCT 特征及吸氢热力学 参数。进而讨论非化学计量比合金中微结构与储氢性能之间的关系。结果表明,快淬薄带中合金主相为 C15 型 ZrV₂及 V-bcc 相,熔体快淬可消除铸态合金中的包晶反应残留相 α-Zr。熔体快淬合金的吸氢动力学性能优异,但由于单胞体积 收缩导致其吸氢量降低。

关键词: 熔体快淬; 非化学计量比; 微结构; 储氢 中图法分类号: TG139⁺.8 文献标识码: A 文章编号: 1002-185X(2015)06-1465-04

 AB_2 型 Zr 基 Laves 相金属间化合物具有贮氢容量 大、吸氢平衡压低、合金组成范围宽、氢化物稳定等性 能特点,作为一种优良的贮氢材料受到广泛关注^[1-5], 可用于氢及其同位素的贮存、分离、回收和提纯等领域 以及作为吸气材料应用于超高真空环境。其中 ZrV₂ 合 金在 10⁵ Pa 氢压下可吸氢 4.8 H/f.u. (即 2.43%,质量分 数)^[6],在 12×10⁵ Pa 下可达到 5.3 H/f.u. (即 2.67%)^[7]; 但其吸氢动力学性能较差,PCT 曲线平台特征差且吸 放氢滞后性明显^[8,9]。

合金化是改善 Zr 基合金吸放氢性能的有效手段。 通过添加 Ti 部分取代 V 后 ZrTi_{0.2}V_{1.8}可明显降低氢化 物稳定性,有利于降低放氢温度^[10];通过在 A 侧添加 Ti 部分取代 Zr 的 Zr_{1-x}Ti_xV₂ (x=0.1~0.3) 合金中多相结 构协同作用可改善活化性能、放氢滞后性并提高吸氢动 力学^[3,8,11]。在 Ti 部分取代 Zr 的 AB2 型(Zr-Ti) (Ni-Mn-Cr-V)合金中, Ti 含量越低, 单胞体积越大, 可 获得更大的可逆吸氢量及更低的吸氢压力平台^[12]。对 (Zr-Ti)(Mn-V)2系合金由组分变化引起的相组成变化规 律的研究表明,Zr-V系合金主要由C15相,bcc相及α-Zr 相组成^[13]。非化学计量比也是改善合金吸放氢性能的 手段之一。改性后的 AB2 型非化学计量比 Ti-Zr-V-Mn 系列合金具有较大的吸氢量及合适的压力平台[14]。有 文献报道,过化学计量比的 Zr 基 AB2 合金由于主吸氢 元素比例的增加从而获得更快的吸氢动力学及更大的吸 氢量,由于单胞体积收缩从而提高吸氢平台压力[15,16]。 熔体快淬对AB2型Laves相合金循环寿命影响的研究表

明快淬可形成一定量的非晶相,**Ti-Zr**基合金的循环稳定性随淬速增加而急剧增加^[17]。以上研究表明,通过 元素替代及设计非化学计量比的方法可以改善合金的 微观组织及相结构,由多相结构组成的*AB*2型合金具有 良好的吸放氢性能。熔体快淬工艺可改变合金的微结构 从而影响其吸放氢性能。

为进一步改善 Zr-Ti-V 伪二元合金的吸氢动力学, 本工作在前期工作基础上设计了成分为 Zr_{0.9}Ti_{0.1}V_{2.2}的 非化学计量比合金并采用熔体快淬工艺制备合金薄带。 研究合金熔体快淬薄带的相结构和显微组织、吸氢动力 学、吸放氢 PCT 特征及热力学参数。进而讨论非化学 计量比合金中微结构与储氢性能之间的关系。

1 实 验

按照设计成分 Zr_{0.9}Ti_{0.1}V_{2.2}配料,原料 Zr、Ti、V 的纯度分别为 99.4%,99.9%和 99.5%。在氩气保护下, 采用非自耗电弧熔炼炉熔炼获得合金铸锭,翻转熔炼 3 次确保合金成分均匀。将铸锭放入底部具有狭缝的 石英管,置于单辊旋淬装置的感应线圈中加热熔融, 然后向石英管中充入高纯氩气将合金熔体喷至快速旋 转的铜辊上得到快淬薄带。铜辊线速度为 40 m/s。蕌

合金的相结构研究在 DX-2700 型 X 射线衍射仪进行。将薄带研成粉末,射线源为 Cu 靶 Kα,电压为 40 kV,电流为 30 mA,采用步进扫描方式,扫描范围为 20°~80°,步长为 0.03°,采样时间 2 s。微观组织形 貌分析采用 Vega Tescan 型扫描电子显微镜,利用二次

收稿日期: 2014-06-01

基金项目: 凝固技术国家重点实验室基础研究项目 (70-QP-2010); 先进材料及其成型技术学科引智计划 (B08040)

作者简介: 张云龙, 男, 1987 年生, 博士, 西北工业大学材料学院, 陕西 西安 710072, 电话: 029-88491764, E-mail: liuding31@163.com

电子成像。同时采用 Oxford INCA PentaFET ×3 型能谱 分析仪对试样表面的元素分布进行分析。

合金吸放氢性能采用 Sievert 型多功能 PCT 设备 进行测试,测试压力范围为 10⁻⁴~10⁵ Pa。合金活化工 艺为 723 K 温度保温 25 min,同时保持抽真空除气。 吸氢 *P-t* 测试在 773 K 进行,吸放氢 PCT 测试温度范 围为 673~823 K,每组测试温度间隔为 50 K。实验用 氢气纯度高于 99.99%。

2 结果与讨论

2.1 物相与微观组织

图 1 为合金快淬薄带的 XRD 图谱。考虑到 Zr 与 Ti 可以在任意成分比例下无限互溶, 可将 Zr_{0.9}Ti_{0.1}V_{2.2} 合金看作伪二元合金。前期研究结果显 示铸态合金是由富 V-bcc 相、C15 型 Laves 相 ZrV? 及 α-Zr 相组成的多相结构^[18]。熔体快淬可消除铸态 合金中的包晶反应残留相 α -Zr,同时观察到少量 Zr₃V₃O相的衍射峰。Zr₃V₃O相的产生可能由于海绵 锆等原料中氧杂质或真空熔炼、熔体快淬过程 10⁻³ Pa 真空环境中的氧残留,同时该相在退火过程后也可能 会出现^[13, 19, 20]。Zr₃V₃O 与 ZrV₂相同为 fcc 结构,其 与 ZrV₂和 V-bcc 相在一些衍射峰位置上互有重叠, 根据 XRD 定量计算得到的相含量可能有一定的误 差。合金中没有检测到 Ti 及 Ti 化合物的衍射峰,说 明Ti元素固溶于整个合金中。表1列出了合金铸态、 退火态与快淬薄带中各相的含量及单胞体积。快淬处 理后相较铸态^[18],合金中 ZrV2相的含量增加,V-bcc 含量略微减少;相较退火态^[18]则 Zr₃V₃O 相明显减少, V-bcc 相增加。快淬薄带中各相的单胞体积较退火态 均有所收缩,这将影响合金的吸氢量。图2为合金快 淬薄带的 SEM 照片。显微组织主要表现为细小的树 枝晶形貌与近ZrV2的液相凝固组织,结合表2的EDS 结果可知,树枝晶的成分主要为富 V 固溶体,枝晶 间化合物的成分接近 ZrV,。相对于铸态合金中粗大 的树枝晶结构, 熔体快淬过程可以抑制树枝晶的长 大,细化晶粒并增加晶界数量以促进氢在合金中的扩 散,从而改善合金的吸氢动力学^[21]。

2.2 吸氢动力学

图 3 是合金快淬薄带在 303 和 773 K 及退火态合 金^[18]在 773K 的吸氢动力学曲线。合金活化后在 303 K 首次吸氢时有 25 s 左右的孕育期,随后 25 s 内吸氢量 随时间迅速增加,100 s 左右吸氢基本饱和,吸氢量达 到 2.05%。合金在 773 K 吸氢时接触氢气即快速吸收, 20 s 左右吸氢己达到基本饱和,吸氢量为 0.92%。结 果说明快淬态合金吸氢动力学性能优异,具备低压快

图 1 熔体快淬 Zr_{0.9}Ti_{0.1}V_{2.2} 合金的粉末 XRD 图谱

Fig.1 Powder XRD patterns of the melt-spun Zr_{0.9}Ti_{0.1}V_{2.2} alloy

表 1 铸态、退火态与熔体快淬 Zr_{0.9}Ti_{0.1}V_{2.2}合金中各相的含量 及单胞体积

Table 1 Phase content and cell volume of each phase in

as-cast, annealed and melt-spun Zr_{0.9}Ti_{0.1}V_{2.2} alloy

			-
	Phase	Phase content, ω /%	Cell volume/ $\times 10^{-3}$ nm ³
Melt-spun	ZrV_2	47	412.08
	V	40	28.13
	Zr_3V_3 O	13	1799.37
As-cast ^[18]	ZrV_2	36	-
	V	44	-
	α-Zr	20	-
Annealed ^[18]	ZrV_2	53	415.31
	V	17	28.27
	Zr_3V_3 O	30	1808.89

图 2 Zr_{0.9}Ti_{0.1}V_{2.2}合金快淬薄带的 SEM 照片 Fig. 2 SEM photograph of melt-spun Zr_{0.9}Ti_{0.1}V_{2.2} alloy

表2 图2中熔体快淬Zr0.9Ti0.1V2.2合金的EDS分析结果

Table 2EDS results of melt-spun Zr_{0.9}Ti_{0.1}V_{2.2} alloy in Fig.2(at%)

Element	Positions			
Element	1	2	3	4
Zr	7.45	2.76	12.79	29.04
Ti	2.26	2.06	3.23	3.18
V	90.28	95.19	83.99	67.78

速吸附氢气至饱和的能力。合金中具有 bcc 结构的 V 基固溶体被认为可改善合金的吸氢动力学^[3]。可以看 出,快淬合金吸氢动力学较退火态^[18]更加迅速,这是 由于其更细的晶粒使表面及晶界数量增加,加快氢在 合金表面的吸附及向合金内部的渗透扩散过程。但由于 其单胞体积明显缩小,使吸氢量较退火态^[18]在 303 K 的 2.25%及 773 K 的 1.08%有所下降。

2.3 吸放氢 PCT 特征

图 4a 是 673~823 K 下合金快淬薄带的吸放氢 PCT 曲线,图 4b 是退火态的 PCT 曲线^[18]。从图中可以看 出,PCT 曲线存在 3 个明显的区域,分别对应 a 相、 (α + β)相、 β 相 3 个吸氢阶段。a 相阶段较短,这时 氢原子以固溶的方式进入合金内部;吸氢量在 0.3~1.2 (H/f.u.)之间有明显的吸氢平台,稳定的 β 相氢化物形 成;随着吸氢量继续增大,全部转变为 β 相,达到吸 氢饱和。对比前期工作^[18]可以看出,快淬合金的 PCT 曲线平台特征较退火态合金明显改善,这是由于 V-bcc 相的增加及与氢亲附性低的 Zr₃V₃O 相的减少导致的。 在 823 K 对合金进行放氢测试,发现合金的放氢曲线 与吸氢曲线十分贴合,无放氢滞后性,说明该非化学 计量比成分合金明显改善了 ZrV₂的放氢滞后性^[8,9]。

从 PCT 曲线根据 Van't Hoff 方程^[22] 拟合可以计算 特定吸氢量下的热力学参数:

$$\ln p_{eq} = \frac{\Delta H^{\Theta}}{RT} - \frac{\Delta S^{\Theta}}{R} \tag{1}$$

式中, *P*_{eq} 为温度 *T*(K)时的吸氢平衡压; Δ*H*、Δ*S* 分别 为生成氢化物过程的焓变和熵变,可通过热力学拟合 线的斜率和在 *Y* 轴的截距得到。不同吸氢量对应的 Van't Hoff 方程拟合线如图 5 所示。从图中看出合金在 各个吸氢量的拟合线相关性非常好。合金吸氢的热力 学参数及外推的室温吸氢平衡压列于表 3。从表中数 据可以看出,合金在稳定吸氢阶段的氢化物形成焓基

图 3 熔体快淬 Zr_{0.9}Ti_{0.1}V_{2.2} 合金 303 及 773 K 及退火态合金在 773 K 的吸氢动力学曲线

Fig.3 Hydrogen absorption kinetics curves of melt-spun $Zr_{0.9}Ti_{0.1}V_{2.2}$ at 303 K and 773 K and annealed $Zr_{0.9}Ti_{0.1}V_{2.2}$ at 773 K^[18]

图 5 熔体快淬 Zr_{0.9}Ti_{0.1}V_{2.2} 合金的吸氢 Van't Hoff 拟合线 Fig.5 Van't Hoff lines of melt-spun Zr_{0.9}Ti_{0.1}V_{2.2} alloy

表 3	Zr	_{0.9} Ti _{0.1} V _{2.2} 合金的吸氢	[[热力学参数]	及外推	室温平衡压
Table	3	Thermodynamic	parameters	and	equilibrium

pressure at 298 K of Zr_{0.9}Ti_{0.1}V_{2.2} alloy

H/f.u.	$\Delta H/kJ \text{-mol}^{-1}$	$\Delta S/J \text{ mol}^{-1} \text{ K}^{-1}$	Relativity	P _{eq} at 298 K
0.30	-109.3	-65.7	0.976	6.0E-12
0.45	-108.7	-66.5	0.966	1.1E-11
0.60	-110.1	-68.2	0.971	1.1E-11
0.75	-108.0	-68.5	0.972	2.8E-11
0.90	-108.3	-69.9	0.976	4.3E-11
1.05	-108.4	-71.0	0.985	7.3E-11
1.20	-108.6	-73.2	0.977	1.3E-10

本一致,为-109 kJ mol⁻¹,其绝对值明显大于退火态合 金的焓变-60 ~ -79 kJ mol^{-1 [18]}。更大的焓变绝对值说 明氢与合金的结合能力更强,氢化物稳定性更高,所 需的放氢温度更高,这有利于氢及其同位素的稳定贮 存。合金的外推室温平衡压基本为 10⁻¹¹ Pa 量级,合金 具有很强的超低压除气能力。

3 结 论

 快淬薄带中合金主相为C15型ZrV₂及V-bcc相, 熔体快淬可消除铸态合金中的包晶反应残留相α-Zr并 生成少量Zr₃V₃O相。

2) 熔体快淬可细化合金晶粒从而提高其吸氢动 力学性能,但由于单胞体积收缩降低合金的吸氢量。 相较退火合金,快淬合金由于V-bcc相的增加及与氢亲附 性低的Zr₃V₃O相的减少使PCT曲线平台特征明显改善。

3) 合金的氢化物形成焓为-109 kJ mol⁻¹,外推室 温平衡压为10⁻¹¹ Pa量级。

参考文献 References

- Peng Shuming(彭述明), Zhao Pengji(赵鹏骥), Long Xinggui (龙兴贵) et al. Acta Metallurgica Sinica(金属学报)[J], 2002, 38(2): 119
- [2] Wang Jinhong(王锦红), Wang Rongshan(王荣山), Weng Likui(翁立奎) et al. Acta Metallurgica Sinica(金属学报)[J], 2011, 47(9): 1200
- [3] Yang Xiaowei(杨晓伟), Li Jinshan(李金山), Zhang Tiebang (张铁邦) et al. The Chinese Journal of Nonferrous Metals(中 国有色金属学报) [J], 2011, 21(05): 1106
- [4] Wang Xufeng(王旭峰), Hu Rui(胡锐), Xue Xiangyi(薛祥义) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2011, 40(3): 487
- [5] Yang Xiaowei(杨晓伟), Li Jinshan(李金山), Wang Xufeng(王 旭峰) et al. Rare Metal Materials and Engineering(稀有金属

材料与工程)[J], 2010, 39(11): 1960

- [6] Pebler A, Gulbransen E A. Electrochem Tech[J], 1966, 4(5-6): 211
- [7] Shaltiel D, Jacob I. J Less-Common Met[J], 1977, 53: 117
- [8] Yang X W, Li J S, Zhang T B et al. Int J Hydrogen Energ[J], 2011, 36(15): 9318
- [9] Peng Shuming(彭述明), Zhao Pengji(赵鹏骥), Xu Zhilei(徐志 磊) et al. Atomic Energy Science and Technology(原子能科学 技术)[J], 2002, 36(4-5): 431
- [10] Yang X W, Zhang T B, Hu R et al. Int J Hydrogen Energ[J], 2010, 35: 11981
- [11] Yin Yunfei(尹云飞), Xue Xiangyi(薛祥义), Yang Xiaowei(杨晓伟) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2009, 38(7): 1223
- [12] Klein B, Simon N, Klyamkine S et al. J Alloy Compd[J], 1998, 280(1-2): 284
- [13] Huot J, Akiba E, Ishido Y. J Alloy Compd[J], 1995, 231(1-2): 85
- [14] Dehouche Z, Savard M, Laurencelle F *et al. J Alloy Compd*[J], 2005, 400(1-2): 276
- [15] Kandavel M, Ramaprabhu S. J Alloy Compd[J], 2004, 381(1-2): 140
- [16] Kandavel M, Ramaprabhu S. Intermetallics[J], 2007, 15(7): 968
- [17] Zhang Yanghuan(张羊换), Li Pin(李平), Wang Xinlin(王新林) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2004, 33(12): 1321
- [18] Zhang Y L, Li J S, Zhang T B et al. Int J Hydrogen Energ[J], 2013, 38(34): 14675
- [19] Shi L Q, Xu S L. J Vac Sci Technol A[J], 2006, 24(2): 190
- [20] Zhang T B, Wang X F, Hu R et al. Int J Hydrogen Energ[J], 2012, 37(3): 2328
- [21] Spassov T, Köster U. J Alloy Compd[J], 1999, 287(1-2): 243
- [22] Flanagan T B, Clewley J D. J Less-Common Met[J], 1982, 83(1): 127

Microstructure and Hydrogen Storage Properties of Melt-spun Zr_{0.9}Ti_{0.1}V_{2.2}

Zhang Yunlong, Li Jinshan, Zhang Tiebang, Kou Hongchao, Hu Rui, Xue Xiangyi (State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China)

Abstract: The non-stoichiometric $Zr_{0.9}Ti_{0.1}V_{2.2}$ alloy was designed and the melt-spun technology was used in this work to improve the hydrogenation kinetics of Laves phase Zr-Ti-V alloys. The microstructure, phase constitution, hydrogenation kinetics, PCT characteristics and the thermodynamics parameters of melt-spun ribbons were investigated. The relationship between microstructure and hydrogen storage properties of non-stoichiometric alloys was further discussed. The results show that C15 type ZrV_2 phase and V-bcc phase are the dominant phases in the alloy, and melt-spun can eliminate the residual α -Zr phase of peritectic reaction in the as-cast alloy. The hydrogenation kinetics is fast in melt-spun alloy, but the hydrogen absorption capacity decreases due to the shrink of cell volume. **Key words:** melt-spun; non-stoichiometric; microstructure; hydrogen storage

Corresponding author: Zhang Tiebang, Ph. D., Associate Professor, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China, Tel: 0086-29-88481764, E-mail: tiebangzhang@nwpu.edu.cn