# 热处理和循环应变对 TiNiZr 合金形状记忆效应和 超弹性的影响

贺志荣,叶俊杰,张坤刚,杜雨青

(陕西理工大学 材料科学与工程学院, 陕西 汉中 723001)

**摘 要**:利用拉伸实验、光学显微镜和透射电镜研究了退火工艺、时效工艺和循环应变对 Ti-50.8Ni-0.1Zr 形状记忆合 金的形状记忆效应(SME)和超弹性(SE)的影响。350~400 ℃和 600~700 ℃退火态合金呈 SE,450~550 ℃退火态 合金呈 SME; 300 ℃×(1~50 h)和 400 ℃×1 h 时效态合金呈 SE,400 ℃×(5~50 h)和 500 ℃×(1~50 h)时效态合金呈 SME。随退火温度升高,合金应力应变曲线平台应力  $\sigma_M$  先降低后升高,最小值 200 MPa 在 500 ℃退火后获得;残余应 变  $\varepsilon_R$ 先升高后降低,最大值 2.64%在 500 ℃退火后获得。随时效时间延长,300 ℃时效态合金的  $\sigma_M$ 降低, $\varepsilon_R$ 始终较小; 400 和 500 ℃时效态合金的  $\sigma_M$ 降低, $\varepsilon_R$ 先升高后趋于稳定。随循环次数增加,呈 SE 的合金由部分非线性 SE 转变为完 全非线性 SE,且  $\sigma_M$ 和能耗ΔW 先降低后趋于稳定;呈 SME 的合金的  $\sigma_M$ 和ΔW 先降低后趋于稳定。

关键词: Ti-Ni-Zr 合金; 形状记忆合金; 热处理; 循环应变; 超弹性

中图法分类号: TG146.23; TG113.25 文献标识码: A 文章编号: 1002-185X(2021)08-2941-09

TiNi 基形状记忆合金(SMA)因具有良好的形状 记忆效应(SME)、超弹性(SE)以及强度高、无磁 性、耐腐蚀、耐磨损、生物相容性好等特性而广受人 们的关注和研究<sup>[1-4]</sup>。TiNi 基 SMA 呈现的优良特性与 其相变温度和力学性能相关。当使用温度低于马氏体 相变结束温度 M<sub>f</sub>时合金呈现 SME,使用温度高于马 氏体逆相变结束温度 A<sub>f</sub> 时合金呈现 SE; 合金的屈服 强度越高, SME 和 SE 越优异<sup>[5]</sup>。通过热处理可调控 SMA 的组织形貌和微观结构,进而改变合金的相变温 度和力学性能;通过掺杂第三组元也可改变合金的相 变温度和力学性能<sup>[6,7]</sup>。因此,可通过添加合金元素 并配合适当热处理来改善合金的 SE 和 SME 特性,进 而扩大 TiNi 基 SMA 的使用范围。研究发现<sup>[8-10]</sup>, Zr 是一种比较理想的添加元素,其价格低廉,特定成分 合金的冷热加工性能较好,在富 Ni 的 TiNi 合金中添 加少量 Zr 后,合金相变温度先降后升,母相 B2 稳定 性增强,屈服强度、延伸率、形状记忆性能改善。SMA 制作的驱动器件和结构部件等零部件在应用中不可避 免的承受周期性、不规律的应力或应变作用,使合金 器件内部产生缺陷并不断积累,导致器件运动距离 精度降低,特别是用于人体和关键结构中由于疲劳 导致合金运动距离精度降低会造成重大人员和财产 损失<sup>[11,12]</sup>。因此,其疲劳性能更是人们十分关注的问

题,需对 SMA 的循环变形行为进行研究,以合理准确地评估此类合金的可靠性。TiNi 基 SMA 在循环变形中会出现性能退化现象,且在一定次数循环后性能将趋于稳定。目前,有关循环变形对 SMA 性能的影响研究主要集中在二元 Ti-Ni SMA 上,对多元 TiNi 基 SMA 性能影响的研究尚不充分<sup>[13-16]</sup>。据此本实验通过向 Ti-Ni SMA 中掺杂 0.1%Zr 元素,得到富 Ni 的Ti-50.8Ni-0.1Zr (原子分数)合金,进而研究热处理工艺和循环应变对 Ti-50.8Ni-0.1Zr 合金 SME 和 SE 特性的影响,为发展适合工程应用的高性能 Ti-Ni-Zr 系 SMA 提供理论依据。

#### 1 实 验

实验所用材料为直径 1 和 3 mm 的冷拉态 Ti-50.8Ni-0.1Zr (原子分数)形状记忆合金丝。以纯度 分别为 99.7%、99.9%和 99.9%的海绵 Ti,电解 Ni 和 高纯 Zr 作为合金原料,经熔炼、旋锻、多道次拉拔和 道次间退火等工序制成合金丝,每道次变形量在 15%~20%之间,拉拔速率 3~9 m/min,2 次退火间总 变形量在 40%~45%之间,每道间需进行 650~800 ℃ 退火。对冷拔态 Ti-50.8Ni-0.1Zr 合金丝使用 SK-GO6J23K 型真空管式电阻炉进行退火和时效处 理,氩气作保护气体。退火工艺为 350、400、450、

基金项目: 国家重点研发计划(2016YFE0111400)

收稿日期: 2020-09-06

作者简介: 贺志荣, 男, 1960年生, 博士, 教授, 陕西理工大学材料科学与工程学院, 陕西 汉中 723001, E-mail: hezhirong01@163.com

500、550、600、650 和 700 ℃加热,保温 20 min, 随炉冷却;时效工艺为先对合金丝进行 800 ℃×0.5 h 固溶水淬处理,后分别在 300、400 和 500 ℃时效 1、 5、10、20 和 50 h,空冷。拉伸试验在 CMT5105 型微 机控制电子万能试验机上进行,上述 23 组试样在相同 加载/卸载速率、应变幅值和实验温度下进行等位移控 制拉伸试验,试验温度 26 ℃,试样长 100 mm,标距 50 mm,采用楔形夹具装卡,加载/卸载本 50 次。 使用 EPIPHOT 300U 型倒置金相显微镜分析不同热处 理后合金的显微组织,腐蚀剂为 HF:HNO<sub>3</sub>:H<sub>2</sub>O=1:4:5 (体积比)。用 JEM-200CX 透射电子显微镜(TEM) 分析不同时效态合金的显微组织,操作电压 160 kV, 相机长度 60 cm,制备样品的双喷减薄液成分为 6%高 氯酸+94%甲醇(体积分数)。

## 2 结果与分析

#### 2.1 典型形变曲线分析

形状记忆合金 SME 和 SE 产生条件如图 1 所示, 图中  $M_s$ 、 $M_f$ 、 $A_s$ 和  $A_f$ 分别代表马氏体相变开始温度、 马氏体相变结束温度、马氏体逆相变开始温度和马氏 体逆相变结束温度。由图可知,当实验温度小于  $M_f$ 时,合金呈现 SME,即加载/卸载曲线形似"台阶" 状,卸载后残余应变存留,加热后残余应变消失,合 金试样原始形状恢复;当实验温度大于  $A_f$ 时,合金呈 现 SE,即加载/卸载曲线呈"旗帜"状,卸载后残余 应变自动消失,合金试样原始形状恢复;当实验温度 在  $M_f$ 和  $A_f$ 之间时,合金呈现 SME+SE。

图 2 给出了 SE 态 (图 2a)和 SME 态 (图 2b) Ti-50.8Ni-0.1Zr 合金加载/卸载前后试样形状的对比。 (1)350、400、600、650、700 ℃退火态合金和 300 ℃ × (1~50 h)、400 ℃×1 h 时效态合金加载/卸载后试 样形状无明显变化 (图 2a),残余应变很小,应力-应 变曲线呈"旗帜"状,这类热处理态合金呈 SE。(2) 450、500、550 ℃退火态合金和 400 ℃×(5~50 h)、 500 ℃×(1~50 h)时效态合金加载/卸载后试样形状 明显弯曲 (图 2b),残余应变较大,将变形试样加热 到高温母相状态后则残余应变消失,试样恢复初始形 貌,应力-应变曲线呈"台阶"状,这类热处理态合金 呈 SME。SME 态合金试样在进行加载/卸载循环试验 时,每次均需加热/降温,使试样每次循环的初始状态 保持一致。

#### 2.2 热处理工艺对合金 SME 和 SE 的影响

2.2.1 退火温度的影响

图 3a 给出了退火温度(T<sub>a</sub>)对 Ti-50.8Ni-0.1Zr 合









- 图 2 SE 态和 SME 态 Ti-50.8Ni-0.1Zr 合金加载/卸载前后试样 形状的对比
- Fig.2 Comparison of specimen shape before and after loading/unloading of Ti-50.8Ni-0.1Zr alloy in SE (a) and SME (b) state

金 SME 和 SE 的影响。由图可知,随  $T_a$ 升高,合金曲 线形态由"旗帜"状变为"台阶"状再转变为"旗帜" 状,即合金的特性由 SE→SME→SE。350~400 ℃和 600~700 ℃退火态合金呈部分非线性 SE,但后者的残 余应变比前者小;  $T_a$ =350~400 ℃时,随  $T_a$ 升高,合 金的 SE 曲线变低,而  $T_a$ =600~700 ℃时,随  $T_a$ 升高, SE 曲线变高; 在加载过程中 350~400 ℃ 和 600~700 ℃退火态合金出现了明显的应力诱发马氏体 相变平台,表明在该退火温度范围内合金在加载时发 生应力诱发 B2→B19'相变(合金产生 SE 的基础);在 卸载过程中,350~400 ℃和 600~700 ℃退火态合金出 现明显的马氏体逆相变平台,即合金发生 B19'→B2 逆 相变。

450~550 ℃退火态合金加载/卸载后,应力回零, 应变残余较大,但将其加热后残余应变回零,合金形 状恢复原貌,呈现良好的 SME;随 T<sub>a</sub>升高,合金的 SME 曲线形态先变低后变高;在加载过程中,450~550 ℃ 退火态合金出现了明显的马氏体再取向(合金产生 SME 的基础)平台,且马氏体再取向应力平台较低。此外,平台上存在锯齿状应力起伏,表明该合金应变 平台的形变机制为孪生<sup>[17]</sup>。

图 3b 所示为  $T_a$  对 Ti-50.8Ni-0.1Zr 合金应力-应变 曲线平台应力 ( $\sigma_M$ ) 和残余应变 ( $\varepsilon_R$ ) 的影响。可以 看出,随  $T_a$ 升高,Ti-50.8Ni-0.1Zr 合金的  $\sigma_M$ 先降低后 升高,最小值 200 MPa 在 500 °C 退火后取得;  $\varepsilon_R$ 先升 高后降低,最大值 2.64% 在 500 °C 退火后取得。 600~700 °C 退火态合金的 SE 优于 350~400 °C 退火 态,表现在  $\sigma_M$ 较大,  $\varepsilon_R$ 较小。呈 SE 的退火态合金的 最高  $\sigma_M$  (506 MPa) 和最小  $\varepsilon_R$  (0.11%) 均在 700 °C 退火后取得。呈 SME 的退火态合金的最高平台应力 280 MPa 和最大残余应变 2.64%分别在 550 和 500 °C 退火后取得。

#### 2.2.2 时效温度和时间的影响

图 4 给出了时效温度 ( $T_{ag}$ )和时效时间 ( $t_{ag}$ )对 Ti-50.8Ni-0.1Zr 合金 SME 和 SE 的影响。由图可知, (1)随  $T_{ag}$ 升高,合金的特性由 SE→SME。(2)  $T_{ag}$ 对合金 SME 和 SE 的影响比  $t_{ag}$ 的影响大。具体来说,



图 3 退火温度对 Ti-50.8Ni-0.1Zr 合金形状记忆行为和曲线平 台应力 σ<sub>M</sub>、残余应变 ε<sub>R</sub> 的影响

Fig.3 Effect of annealing temperature on shape memory behavior (a) and platform stress  $\sigma_M$ , residual strain  $\varepsilon_R$  (b) of Ti-50.8Ni-0.1Zr alloy 300 ℃时效后,随  $t_{ag}$  延长,合金保持非线性 SE,应 力应变曲线变低,SE 应力降低,滞回面积增加,阻尼 性提高;400 ℃时效后,随  $t_{ag}$  延长,合金的特性由 SE→SE+SME→SME,应力应变曲线变低,SME 应力 降低;500 ℃时效后,随  $t_{ag}$  延长,合金的特性由 SE+SME→SME,应力-应变曲线变低,SME 应力降低。

图 5 所示为 T<sub>ag</sub> 和 t<sub>ag</sub> 对 Ti-50.8Ni-0.1Zr 合金 σ<sub>M</sub> 和 ε<sub>R</sub>的影响。由图 5a 知, 呈 SE 的 300 ℃时效态合金的 应力诱发马氏体相变平台应力 σ<sub>M</sub> 高于 400 ℃×1 h 时 效态合金的;随 t<sub>ag</sub>延长,300 ℃时效态合金的 σ<sub>M</sub>降 低,由1h的472 MPa降至50h的348 MPa。随tag 延长,呈 SME 的 400 ℃×(5~50 h)和 500 ℃×(1~50 h)时效态合金的马氏体再取向平台应力  $\sigma_{M}$ 均不断降 低,分别由 400 ℃×5 h 和 500 ℃×1 h 的 274 MPa 和 304 MPa 降至 50 h 的 187 MPa 和 123 MPa。由图 5b 知, 呈 SE 的 300 ℃× (1~50 h) 和 400 ℃×1 h 时效态合金的  $\varepsilon_{\rm R}$  几乎不受  $T_{\rm ag}$  和  $t_{\rm ag}$  影响,  $\varepsilon_{\rm R}$  始终很小 (0.1052%~0.2166%)。随 *t*ag 延长,呈 SME 的 400 ℃ × (5~50 h) 和 500 ℃× (1~50 h) 时效态合金的 *ε*<sub>R</sub> 先升高后趋于稳定。综合比较可知, Ti-50.8Ni-0.1Zr 合金经低温短时时效后 SME 和 SE 较优,如 300 ℃低 温时效和 400 ℃短时时效后 Ti-50.8Ni-0.1Zr 合金的 SE 优异,不仅  $\sigma_M$  大而且  $\varepsilon_R$  小。

#### 2.3 循环应变对合金 SME 和 SE 的影响

#### 2.3.1 对退火态合金 SME 和 SE 的影响

图 6 给出了 350~650 ℃退火态 Ti-50.8Ni-0.1Zr 合 金随循环次数增加 SME 和 SE 的变化规律。由图 6 可 知,随循环次数(N)增加,不同退火态合金的应力-



- 图 4 时效温度和时效时间对 Ti-50.8Ni-0.1Zr 合金形状记忆行 为的影响
- Fig.4 Effects of aging temperature and aging time on shape memory behaviors of Ti-50.8Ni-0.1Zr alloy aged at 300 °C × (1~50 h) (a), 400 °C × (1~50 h) (b) and 500 °C × (1~50 h) (c)



图 5 时效温度和时效时间对 Ti-50.8Ni-0.1Zr 合金平台应力 σ<sub>M</sub> 和残余应变 ε<sub>R</sub> 的影响

Fig.5 Effects of aging temperature and aging time on platform stress  $\sigma_M$  (a) and residual strain  $\varepsilon_R$  (b) of Ti-50.8Ni-0.1Zr alloy

应变曲线形态变化不尽相同。350 和 650 ℃退火态合 金初次循环后存在较大残余应变,随 N 增加,残余应 变消失,合金由部分非线性 SE 转变为完全非线性 SE, SE 改善;随 N 增加,350 ℃退火态合金的 SE 曲线形 貌变化不大,呈"旗帜"状,而 650 ℃退火态合金的 SE 曲线斜度增加,变细长。对于 450 ℃退火态合金, 当 N<30 时,在应变量约 0.4%处存在一个小应变低应 力 R 相再取向应力平台<sup>[18]</sup>,随 N 增加,该退火态合金 的 SME 曲线变低后趋于稳定。随 N 增加,550 ℃退 火态合金的 SME 曲线变低变斜后趋于稳定。

图 7 所示为 N 对退火态 Ti-50.8Ni-0.1Zr 合金  $\sigma_M$ 、  $\varepsilon_R$ 和能耗 $\Delta W$ 的影响。能耗 $\Delta W$ 在数值上等于加载卸载 后应力-应变曲线包围的面积。对于应力应变曲线呈 "旗帜"型闭合回线的 SE 合金来说, $\Delta W$ 代表阻尼减 震性能, $\Delta W$ 越大合金阻尼减震性能越好;对于应力-应变曲线呈"台阶"型非闭合回线的 SME 合金来说,  $\Delta W$ 代表加载卸载后外力所作的功, $\Delta W$ 越大外力做功 越多。由图 7a 知,随 N 增加,350、450、550 和 650 °C 退火态合金的  $\sigma_M$  先降低后趋于稳定,其中 550 和 650 °C退火态合金  $\sigma_M$ 的降低速率比 350 和 450 °C



- 图 6 循环次数 N 对退火态 Ti-50.8Ni-0.1Zr 合金 SME 和 SE 的 影响
- Fig.6 Effects of cycle number N on SME and SE of annealed Ti-50.8Ni-0.1Zr alloy: (a) T=350 °C, N=1~50; (b) T=450 °C, N=1~50; (c) T=550 °C, N=1~50; (d) T=650 °C, N=1~50



图 7 应力-应变循环对退火态 Ti-50.8Ni-0.1Zr 合金平台应力 σ<sub>M</sub>、残余应变 ε<sub>R</sub> 和能耗ΔW 的影响

Fig.7 Effects of stress-strain cycle number N on platform stress  $\sigma_{\rm M}$  (a), residual strain  $\varepsilon_{\rm R}$  (b) and energy dissipation  $\Delta W$  (d) of annealed Ti-50.8Ni-0.1Zr alloy

的大。由图 7b 知,随 N 增加,350 和 650 ℃退火 态合金的  $\varepsilon_{\rm R}$  先降低后趋于稳定,在循环 5 次后  $\varepsilon_{\rm R}$ 就稳定了;450 和 550 ℃退火态合金的  $\varepsilon_{\rm R}$  较大, 其中 450 ℃退火态合金的  $\varepsilon_{\rm R}$  稳定性最好。由图 7c 知,随 N 增加,350 ℃退火态合金的 $\Delta W$  非常稳定; 450 ℃退火态合金的 $\Delta W$ 由于小应变低应力 R 相再 取向平台的存在而呈先降低后升高再趋稳定的态 势;550 和 650 ℃退火态合金的 $\Delta W$ 则先降低后趋 稳定。

2.3.2 循环数对时效态合金 SME 和 SE 的影响

图 8 给出了 300~500 ℃×(1~50 h) 时效态

Ti-50.8Ni-0.1Zr 合金随 *N* 增加 SME 和 SE 的变化。由 图 8a~8d 知,300 ℃×(1、10、50 h)和 400 ℃×1 h 时效态 Ti-50.8Ni-0.1Zr 合金初次循环后存在较大残余 应变,随 *N* 增加,残余应变消失,合金由部分非线性 SE 转变为完全非线性 SE,SE 曲线形貌变化不大,SE 稳定性好。由图 8e~8i 知,400 ℃×(10、50 h)和 500 ℃×(1、10、50 h)时效态合金 SME 曲线形态 变化较大,其中 400 ℃×10 h和 500 ℃×(1、10 h) 时效态合金随 *N* 增大,曲线不断变低,而 400 ℃×50 h 和 500 ℃×50 h 时效态合金在约 10 次循环后曲线就 趋于稳定。



图 8 循环次数 N 对时效态 Ti-50.8Ni-0.1Zr 合金 SME 和 SE 的影响

Fig.8 Effects of cycle number N on SME and SE of aged Ti-50.8Ni-0.1Zr alloy after different aging treatment: (a) 300  $^{\circ}C \times 1$  h, (b) 300  $^{\circ}C \times 10$  h, (c) 300  $^{\circ}C \times 50$  h, (d) 400  $^{\circ}C \times 1$  h, (e) 400  $^{\circ}C \times 10$  h, (f) 400  $^{\circ}C \times 50$  h, (g) 500  $^{\circ}C \times 1$  h, (h) 500  $^{\circ}C \times 10$  h, (i) 500  $^{\circ}C \times 50$  h

图 9 给出了 N 对时效态 Ti-50.8Ni-0.1Zr 合金  $\sigma_M$ 、 $\varepsilon_R$ 和 $\Delta W$  的影响。由图 9 知,随 N 增大,呈 SE 的 300 °C × (1、10、50 h)和 400 °C×1 h 时效态合金的  $\sigma_M$ 、  $\varepsilon_R$ 和 $\Delta W$  均先快速降低后趋于稳定,可见循环训练能 增强合金 SE 的稳定性。随 N 增大,呈 SME 的时效态 合金中,400 °C×10 h和 500 °C×1 h 合金的  $\sigma_M$ 和 $\Delta W$ 降低, $\varepsilon_R$ 增加;400 °C×50 h 合金的  $\sigma_M$ 、 $\varepsilon_R$ 、 $\Delta W$ 变 化不大;500 °C×10 h 合金的  $\sigma_M$ 、 $\omega$  先降低循环 45 次后趋于稳定, $\varepsilon_R$ 小幅增大后趋于稳定;500 °C×50 h 合金的  $\sigma_M$ 、 $\Delta W$ 先降低循环 30 次后趋于稳定, $\varepsilon_R$ 变化 较小。

综上,TiNiZr 系 SMA 实际应用时,可对其先进 行一定次数的预应力-应变循环,以改善合金稳定性, 保障使用精度,延长使用寿命。

## 3 讨 论

#### 3.1 热处理工艺对合金 SME、SE、 $\sigma_M$ 、 $\varepsilon_R$ 的影响

Ti-50.8Ni-0.1Zr 合金丝在冷拔过程中吸收变形 功, 晶粒沿拉拔方向拉长, 结构缺陷增多, 储存能升 高,处于亚稳状态。室温下因原子扩散能力弱,该状 态保持。在此状态下, Ti-50.8Ni-0.1Zr 合金内部结构 缺陷与马氏体相变产生的应力场相互作用,阻碍马氏 体变体形成<sup>[19]</sup>,为使相变进行需较大过冷度驱动,故 合金因相变温度较低而呈 SE。由图 10 所示 Ta对合金 显微组织影响规律知, T<sub>a</sub><500 ℃时合金组织呈纤维 状, T<sub>a</sub>>600 ℃后则呈等轴状。可见, 随 T<sub>a</sub>升高, 合 金经历了回复、再结晶和晶粒长大过程。在回复阶段, 组织呈纤维状,随T<sub>a</sub>升高,纤维状弱化,晶粒内部形 成多边化亚结构,异号位错相消,缺陷密度降低,马 氏体相变阻力和所需过冷度减小,相变温度升高,使 合金特性由 SE 转变为 SME。再结晶后,冷变形 Ti-50.8Ni-0.1Zr 合金恢复软化状态,在变形基体中形 成了无畸变的等轴状新晶粒,缺陷密度减低,马氏体 形核位置减少,马氏体相变被阻抑,相变所需过冷度 增大,相变温度降低,使合金呈 SE。对于 TiNi 基 SMA, 马氏体相强度低,易变形,而母相硬度、强度高,不易 变形。随 T<sub>a</sub>升高,由于合金显微结构变化引起 Ti-50.8Ni-0.1Zr 合金马氏体相变温度先升高后降低<sup>[20]</sup>, 使基体中马氏体相和母相所占比例呈现此消彼长,从 而使退火态 Ti-50.8Ni-0.1Zr 合金的  $\sigma_{\rm M}$  和  $\varepsilon_{\rm R}$  随  $T_{\rm a}$  的变 化而变化。

与退火态合金不同,固溶处理后 Ti-50.8Ni-0.1Zr 合金基体组织均匀性改善,形态呈等轴状(图 11a)。 对于富 Ni 的 Ti-50.8Ni-0.1Zr 合金来说,基体 Ni 含量 变化是其形变行为改变的主要因素<sup>[21-26]</sup>。时效处理后 合金中会析出 Ti<sub>3</sub>Ni<sub>4</sub> 沉淀相(图 11b),随时效温度 升高和时效时间延长,富 Ni 的 Ti<sub>3</sub>Ni<sub>4</sub> 通过吸收基体 中的 Ni 不断生长和增多,导致基体中 Ni 原子过饱和 度降低,晶格变形和相变阻力降低,马氏体相变温度 升高,使合金特性由 SE 转变为 SME,同时因基体中 强度较低的马氏体相所占份额增多而使  $\sigma_M$  降低,  $\varepsilon_R$ 增加。

3.2 循环应变对合金 SME、SE、 $\sigma_M$ 、 $\varepsilon_R$ 、 $\Delta W$  的影响

随 N 增加, 呈 SE 的 350、650 ℃退火态和 300 ℃ × (1、10、50 h)、400 ℃×1 h 时效态 Ti-50.8Ni-0.1Zr 合金的  $\sigma_M$ 、 $\varepsilon_R$ 、 $\Delta W$  先降低后趋于稳定,对其机理分 述如下。该类合金处于强度较高的母相状态,在每次 加载/卸载时,合金依次经历母相弹性变形、应力诱发



图 9 应力-应变循环对时效态 Ti-50.8Ni-0.1Zr 合金平台应力 σ<sub>M</sub>、残余应变 ε<sub>R</sub> 和能耗ΔW 的影响

Fig.9 Effects of stress-strain cycle number N on platform stress  $\sigma_{\rm M}$  (a), residual strain  $\varepsilon_{\rm R}$  (b) and energy dissipation  $\Delta W$  (c) of aged Ti-50.8Ni-0.1Zr alloy



图 10 400、500、600 和 700 ℃退火态 Ti-50.8Ni-0.1Zr 合金的显微组织 Fig.10 Microstructures of Ti-50.8Ni-0.1Zr alloy annealed at 400 ℃ (a), 500 ℃ (b), 600 ℃ (c) and 700 ℃ (d)





马氏体相变、应力诱发马氏体逆相变和母相弹性恢复。 随 N 增加,每次应力-应变循环会引入大量新的位错和 空位等晶体缺陷<sup>[13]</sup>,使合金缺陷密度增大和内应力增 大,产生形变强化作用,该作用再与每次应力诱发马 氏体相变及其逆相变相互作用,使合金由部分非线性 SE 转变为完全非线性 SE,并使应力诱发马氏体相变 在较低应力下发生,同时在最大应变处由于马氏体长 大困难,由弹性变形来承担应力增加,宏观上合金曲 线变陡峭。循环一定次数后,合金基体中位错密度达 到饱和状态,SE 曲线和  $\sigma_M$ 、 $\varepsilon_R$ 性能趋于稳定。能耗 作用来自于每次受外力循环作用合金内部各类界面的 弹滞性迁移运动(界面运动能耗)和应力诱发马氏体 相变及其逆相变形成时界面摩擦运动(相变能耗)所 消耗的能量<sup>[14]</sup>。在循环初期,合金内部各种界面可动 性较高,同时与应力诱发马氏体相变及其逆相变相互 作用,使合金的能耗作用较强。随循环次数增加,合 金基体中位错密度逐渐达到稳定饱和状态,形变织构 减少,对位错运动阻碍作用减弱,各类界面的可动性 增强,使界面运动产生的能耗作用减弱并趋于稳定, 故合金的ΔW逐渐降低最终趋于稳定。

呈 SME 的 450、550 ℃退火态和 400 ℃×(10、 50 h)、500 ℃×(1、10、50 h)时效态 Ti-50.8Ni-0.1Zr 合金与呈 SE 的合金循环应变对其影响所不同的是: 合金基体中马氏体相占优,合金强度较低,易变形, 应力-应变曲线较低。合金在加载时,依次经历马氏体 弹性变形、应力诱发马氏体再取向。在应力诱发马氏 体再取向时,自适应马氏体经弹性变形后马氏体中的 孪晶、层错等缺陷受应力作用将产生移动,发生孪生 变形,变形对应着24个马氏体变体之间的变换,在变 换过程中,由于马氏体变体共格界面多,沿应力取向 有利的变体可通过共格界面的迁移吞并不利取向的马 氏体变体而长大,即最初是在单个惯习面变体内"吞 食", 接着在形成 4 个片群的惯习面变体间"吞食", 最终在整个晶体中形成最有利位向的某一变体的马氏 体单晶,同时伴随着宏观形变[15]。卸载后应力诱发马 氏体再取向产生的宏观变形量残余,在下次循环前需 升温/降温,通过温度诱发马氏体相变,使合金依照严 格的位向关系协同长大,形成自适应马氏体,使可逆 残余应变回零形貌恢复原状,且可逆残余应变取决于 最后的单一变体中的点阵应变大小。在应力-应变循环 时,最大应变量为3.5%,应力诱发马氏体再取向时未 充分达到形成单一马氏体变体,同时由于不同热处理 态合金基体中马氏体量也存在差异,即不同热处理态 合金中变体之间存在差异,并且在循环过程中界面不 断运动,位错不断增殖,使马氏体自协作程度下降, 马氏体有序度下降<sup>[16]</sup>。正是这种现象使 450、550 ℃ 退火态和 400 ℃×(10、50 h)、500 ℃×(1、10、50 h) 时效态合金中有的合金经 50 次循环应变后呈现出稳 定性。

## 4 结 论

 1)随 *T*<sub>a</sub>升高, Ti-50.8Ni-0.1Zr 合金特性由 SE→ SME→SE, σ<sub>M</sub>先降低后升高,最小值 200 MPa 在 500 ℃ 退火后取得; ε<sub>R</sub>先升高后降低,最大值 2.64%在 500 ℃ 退火后取得。350~400 ℃和 600~700 ℃退火态合金呈 SE, 450~550 ℃退火态合金呈 SME。

2)随  $T_{ag}$ 升高和  $t_{ag}$ 延长,合金特性由 SE→SME。 300 ℃×(1~50 h)和 400 ℃×1 h 时效态合金呈 SE,随  $t_{ag}$ 延长, $\sigma_{M}$ 降低,而  $\varepsilon_{R}$ 始终较小。400 ℃×(5~50 h)和 500 ℃×(1~50 h)时效态合金呈 SME,随  $t_{ag}$ 延长, $\sigma_{M}$ 降低, $\varepsilon_{R}$ 先升高后趋于稳定。

3)随 N 增加,350、650 ℃退火态和 300 ℃×(1、
10、50 h)、400 ℃×1 h 时效态合金由部分非线性 SE
转变为完全非线性 SE, σ<sub>M</sub>、ε<sub>R</sub>、ΔW 逐渐降低并趋于
稳定。

4)随 N 增大,450 和 550 ℃退火态合金的  $\sigma_{M}$  和 ΔW 先降低后趋于稳定, $\varepsilon_{R}$ 较大。400 ℃×10 h 和 500 ℃×1 h 时效态合金的  $\sigma_{M}$ 和ΔW 降低, $\varepsilon_{R}$ 增加; 400 ℃×50 h 时效态合金的  $\sigma_{M}$ 、 $\varepsilon_{R}$ 和ΔW 变化不大; 500 ℃×10 h 和 500 ℃×50 h 时效态合金的  $\sigma_{M}$ 、ΔW 先降低后趋于稳定,前者的  $\varepsilon_{R}$ 先增加后趋于稳定,后 者的  $\varepsilon_{R}$ 变化较小。

#### 参考文献 References

- Jani J M, Leary M, Sunic A et al. Materials and Design[J], 2014, 56: 1078
- [2] Khmelevskaya I, Ryklina E, Korotitskiy A. Foundations of Materials Science and Engineering[J], 2015, 81-82: 603
- [3] Bashir S. Shariat, Meng Q, Abdus S et al. Materials and Design[J], 2017, 124: 225
- [4] Hartl D J, Lagoudas D C. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering[J], 2014, 221(4): 535
- [5] He Zhirong(贺志荣). Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2015, 44(7): 1639
- [6] He Zhirong(贺志荣), Wang Fang(王 芳), Wang Yongshan(王 永善) et al. Acta Metallurgica Sinica(金属学报)[J], 2007, 43(12): 1293
- [7] Bozzolo G, Noebe R D, Mosca H O. Journal of Alloys and Compounds[J], 2005, 389(1): 80
- [8] Feng Zhaowei(冯昭伟), Qan Dongfan(千东范), Gao Baodong(高宝东) et al. Chinese Journal of Rare Metals(稀有 金属)[J], 2001, 25(1): 47
- [9] Feng Zhaowei(冯昭伟), Cui Yue(崔跃), Shang Zaiyan(尚再艳) et al. Materials Reports(材料导报)[J], 2016, 30(S2): 616
- [10] Yi X, Wang H, Sun B et al. Journal of Alloys and Compounds[J], 2019, 778: 542
- [11] Rao Guangbin(饶光斌), Wang Jianqiu(王俭秋), Han Enhou(韩恩厚) et al. The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J], 2005, 15(1): 12
- [12] Kang Guozheng(康国政). Journal of Southwest Jiaotong University(西南交通大学学报)[J], 2011, 46(3): 355
- [13] Ammar O, Haddar N, Dieng L. Intermetallics[J], 2017, 81:52
- [14] Song D, Kang G Z, Kan Q H et al. Smart Materials and Structures[J], 2014, 23(1): 5008
- [15] Xiao Y, Zeng P, Lei L P et al. Materials and Design[J], 2017, 134: 111
- [16] Hua P, Chu K J, Ren F Z et al. Acta Materialia[J], 2020, 185: 507
- [17] Liu Kangkai(刘康凯), HE Zhirong(贺志荣), Feng Hui(冯 辉) et al. The Chinese Journal of Nonferrous Metals(中国有色金 属学报)[J], 2020, 30(8): 21
- [18] Feng Hui(冯 辉), He Zhirong(贺志荣), Du Yuqing(杜雨青) et al. Journal of Functional Materials(功能材料)[J], 2020, 51(7): 07 056
- [19] He Zhirong(贺志荣), Liu Kangkai(刘康凯), Wang Fang(王 芳) et al. The Chinese Journal of Nonferrous Metals(中国有

色金属学报)[J], 2019, 29(4): 742

- [20] Ye Junjie(叶俊杰), He Zhirong(贺志荣), Zhang Kungang(张 坤刚) et al. Transactions of Materials and Heat Treatment(材 料热处理学报)[J], 2020, 41(11): 61
- [21] Sandu A M, Tsuchiya K, Tabuchi M et al. Materials Transactions[J], 2007, 48(3): 432
- [22] Sandu A M, Tsuchiya K, Yamamoto S et al. Materials Science Forum[J], 2007, 539-543: 3163
- [23] Pérez-Sierra A M, Pons J, Santamarta R et al. Scripta Materialia[J], 2016, 124: 47
- [24] Holec D, Bojda O, Dlouhy A. Materials Science and Engineering A[J], 2006, 481: 462
- [25] Frenzel J, George E P, Dlouhy A et al. Acta Materialia[J], 2010, 58(9): 3444
- [26] Chang S H, Wu S K. Materials Science and Engineering A[J], 2007, 454-455: 379

# Effect of Heat Treatment and Cyclic Strain on Shape Memory Effect and Superelasticity of TiNiZr Alloy

#### He Zhirong, Ye Junjie, Zhang Kungang, Du Yuqing

(School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China)

**Abstract:** The effects of annealing processes, aging processes and cyclic strain on shape memory effect (SME) and superelasticity (SE) of Ti-50.8Ni-0.1Zr shape memory alloy were investigated by tensile test, optical microscopy and TEM. The alloys annealed at 350~400 °C and 600~700 °C present SE, the alloys annealed at 450~550 °C present SME, the alloys aged at 300 °C for 1~50 h and at 400 °C for 1 h present SE, and the alloys aged at 400 °C for 5~50 h and 500 °C for 1~50 h present SME. With increasing annealing temperature, the platform stress ( $\sigma_M$ ) of the stress-strain curve in the alloy decreases firstly and then increases, and the minimum 200 MPa is obtained in the alloy annealed at 500 °C; the residual strain ( $\varepsilon_R$ ) increases firstly and then decreases, and the maximum 2.64% is obtained in the alloy annealed at 500 °C. With increasing aging time, the  $\sigma_M$  decreases, and the  $\varepsilon_R$  is small in the alloy aged at 300 °C; the  $\sigma_M$  decreases, and the  $\varepsilon_R$  increases firstly and then tends to be stable in the alloy aged at 400 and 500 °C. With increasing stress-strain cycle number, the alloy presenting SE transforms from partial nonlinear SE to fully nonlinear SE, and the  $\sigma_M$  and energy dissipation ( $\Delta W$ ) decrease firstly and then tend to be stable; the  $\sigma_M$  and  $\Delta W$  decrease firstly and then tend to be stable in the alloy presenting SME.

Key words: Ti-Ni-Zr alloy; shape memory alloy; heat treatment; cyclic strain; superelasticity

Corresponding author: He Zhirong, Ph. D., Professor, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, P. R. China, E-mail: hezhirong01@163.com