从不同形式钨铼合金废料中回收铼的研究

许荡^{1,2},程继贵^{1,2},陈鹏起^{1,2},张久兴^{1,2},操齐高³,陈昆昆³,赵盘巢³

(1. 合肥工业大学 材料科学与工程学院,安徽 合肥 230009)

(2. 安徽省粉末冶金工程技术研究中心, 安徽 合肥 230009)

(3. 西北有色金属研究院,陕西西安 710016)

摘 要:铼作为一种稀有难熔金属,因具有独特的性能使其应用受到重视。在铼资源不足的情况下,从含铼废料中回 收铼被认为是获取铼的重要途径之一。本工作选取粉末状、块状以及丝状 3 种不同形式的钨铼合金废料,进行火法回 收铼的研究,对不同工艺参数下氧化焙烧、氨水浸出和蒸发结晶所得回收中间产物 NH4ReO4 和最终氢还原所得铼粉 的性能进行表征。结果表明,钨铼合金废料的形式对铼的回收工艺条件和回收率有明显的影响,未合金化的钨铼合金 粉末状废料及合金化后的块状和丝状废料回收时需采用不同的氧化温度,且在不同的温度下 Re2O7 有不同的挥发率, 粉末状、块状以及丝状 3 种不同形式的钨铼合金废料回收所得铼粉的纯度分别为 99.952%、99.939%和 99.915%,铼 的回收率分别为 95.62%, 94.57%和 91.59%。

关键词: 钨铼合金废料; 铼; 回收; 火法冶金; 废料形式 中图法分类号: TG146.4⁺11; TG146.4⁺18 文献标识码: A 文章编号: 1002-185X(2023)01-0230-08

铼具有高的强度和硬度、耐腐蚀、耐高温以及良 好的塑性等优良性能,是航空航天、高温合金及石油 催化等领域重要的战略资源^[1-3]。但由于铼资源的稀 缺,含铼原生矿物资源的逐渐匮乏,使得从含铼废料 中回收铼成为获取铼重要的途径之一^[4]。铼常被制成 钨铼合金,在钨中添加 3%~26%(质量分数)的铼以提 高合金的强度、韧性等性能^[5-6]。随着钨铼合金使用 量的增加,钨铼合金废料也随之增加,废料中高的铼 含量使其成为极具吸引力的铼回收资源。因此,从钨 铼合金废料中回收铼具有重要的经济价值^[7-8]。

根据应用领域的不同,钨铼合金废料有多种形 式,一般可分为3类^[9]:一是处于未合金化的粉末或粉 末颗粒聚集体形式的废料,是在钨铼合金的制备过程 中,粉末在混合、过筛、还原及压制工艺中由于各种 因素散落或剩余而产生的残余粉末。二是处于合金化 后的块状废料,是经烧结加工时产生的不合格坯体或 钨铼合金部件废弃后产生的废料,例如钨铼合金废坯 条、棒、杆、片、带及箔等。三是处于合金化后的丝 状废料,是钨铼合金经锻压、拉拔等工艺加工制成合 金丝的过程中,产生的不合格产品或成品物件废弃后 产生的废料。总之,由于钨铼合金废料形态的不同, 回收工艺条件也必有所差异。因此,从不同形式的钨 铼合金废料中回收铼的研究也是目前所关注的重点。

目前,各国从钨铼合金废料中回收铼主要有火 法^[10-11]和湿法^[12-14]等。湿法回收铼的工艺原理是使 用氧化性的酸或碱处理含铼废料, 使铼以 ReO4 的形 式进入溶液,浸出液再经化学沉淀[15]、离子交换[16] 或溶剂萃取^[17]等方法进一步提取铼。湿法在铼的回 收率上具有很大的优势,可达 74%~98%,但主要缺 点是使用的强氧化性酸或碱易腐蚀设备,产生的废 液、废渣不易处理等[18]。火法由于其对废料的形式 要求较低,重金属污染少,废液处理方便,被认为是 一种具有潜在价值的回收铼的方法^[19]。火法从钨铼 合金废料中回收铼的工艺主要有碱熔法^[10]、石灰焙 烧法[20]以及氧化挥发法[21-22]等。碱熔法的主要缺点 是废料中钨和铼的分离效率低,回收所得铼的纯度较 低,且使用的强碱易腐蚀设备,成本较高。Ye 等 人^[10]用 KOH-K₂CO₃ 二元熔盐采用碱熔法在 800 ℃ 将钨铼合金废丝转化为不溶性的 KReO4 和可溶性的 K₂WO₄,然后经重结晶、氢气还原和洗涤后制得纯 度达 99.5%、平均粒径为 19.37 μm 的铼粉。至于石 灰焙烧法,工艺简单可行,但由于加入了大量的石 灰,导致回收的铼粉的纯度很低^[20]。氧化挥发法主 要是利用铼和钨的氧化物挥发温度的不同选择性地回

收稿日期: 2022-01-06

基金项目:国家重点研发计划(2018YFC1901700, 2018YFC1901704)

作者简介:许 荡,男,1995年生,硕士,合肥工业大学材料科学与工程学院,安徽合肥 230009, E-mail: xudang07@163.com

收铼。美国专利 US4604265A^[21]报道了钨铼合金废 丝的多步氧化过程,在氧化温度中以足够的时间将废 料中的钨和铼转化为各自的氧化物,一次氧化后废料 被磨碎并重新氧化,然而没有进一步处理铼的氧化 物。Gaur^[22]等人采用氧化挥发法从钨铼合金废丝中 回收铼,废料在 900 ℃氧化焙烧 20 h,后经氨水浸 出、重结晶和氢还原得到不含钨和其它金属杂质的金 属铼粉。相比于碱熔法和石灰焙烧法,采用氧化挥发 法从钨铼合金废料中回收铼,选择合适的工艺参数, 钨和铼的分离效率高,后续经水浸出、重结晶和氢还 原,制得铼粉具有较高的纯度和回收率,是一种具有 良好前景的回收铼的方法^[21-22]。

本工作选取粉末状、块状以及丝状 3 种不同形式 的钨铼合金废料,进行火法回收铼的试验研究,主要 步骤包括氧化挥发、氨水浸出、蒸发结晶和氢还原, 并对不同形式废料的氧化温度、Re₂O₇ 挥发率、回收 所得 NH₄ReO₄ 和铼粉的微观形貌、纯度以及铼的回 收率进行了对比分析。

1 实 验

实验所用粉末状、块状以及丝状 3 种不同形式的 钨铼合金废料由北京安泰科技股份有限公司提供,其 化学成分见表 1,3 种废料中铼的含量约为 5%。首 先将3种钨铼合金废料于稀盐酸中浸泡以除去表面氧 化物和杂质,用纯水洗净后真空干燥至质量不发生变 化。再分别对其进行预处理,即磨细(粉末状废 料)、破碎(块状废料)和剪断(丝状废料),图1为 钨铼合金废料预处理前后的形态照片。实验所用主要 试剂稀盐酸和氨水均为分析纯,所有进行浸出和洗涤 的实验均采用去离子水。铼的回收过程包括 4 个步 骤:(1)氧化焙烧;将预处理后的钨铼合金废料置于 双温区管式炉的第 1 温区, 在空气气氛下于 450~ 850 ℃焙烧 6 h,并设置第 2 温区温度为 240 ℃,以 防止生成的 Re₂O₇在管式炉内冷凝;(2) 氨水浸出; 所得 Re₂O₇ 通入 30% (质量分数) 的氨水中进行冷凝 吸收,得到 NH₄ReO₄ 溶液;(3) 蒸发结晶;将 NH₄ReO₄溶液于 80 ℃恒温干燥箱中进行蒸发结晶, 制得 NH₄ReO₄粉末; (4) 氢还原; 将 NH₄ReO₄粉末 在氢气气氛中于 550 ℃焙烧还原 90 min,得到铼 粉。图 2 为从不同形式的钨铼合金废料中回收铼的工 艺流程图。

采用同步热分析仪(STA449F5,NETZSCH) 对 3 种不同形式的钨铼合金废料进行热重(TG-DSC)分析。采用 X 射线衍射仪(X 'Pert PRO MPD, PANalyticl B.V.)对回收制备的 NH₄ReO₄和铼 粉的物相组成(XRD)进行表征。采用配有能谱仪 的场发射扫描电子显微镜(SUS8020,Hitachi)对 回收制备的 NH₄ReO₄ 及铼粉的微观形貌(FESEM) 进行观察,并对其元素分布(EDS)进行分析。采用 激光粒度分析仪(MS-2000,Malvern)对铼粉的粒 度分布进行测试。采用电感耦合等离子体发射光谱仪 (ICPOES730,Agilent)对 3 种不同形式的钨铼合 金废料、NH₄ReO₄和铼粉的化学成分组成(ICP-OES)进行测定。

铼的理论回收率、实际回收率与相对回收率计算 公式如下^[10,23]:

$$\alpha_{t} = \left(\frac{m_{0}\beta - m_{1}\gamma}{m_{0}\beta}\right) \times 100\% \tag{1}$$

$$\alpha_{\rm a} = \left(\frac{m_2}{m_0 \beta}\right) \times 100\% \tag{2}$$

$$\alpha_{\rm r} = (\frac{\alpha_{\rm a}}{a_{\rm s}}) \times 100\% \tag{3}$$

式中, α_1 、 α_a 和 α_r 分别为铼的理论回收率、实际回收 率及相对回收率(%); m_0 为钨铼合金废料的质量 (g); β 为钨铼合金废料中铼的含量(%); m_1 为氧 化产物的质量(g); γ 为氧化产物中铼的含量(%)。 m_2 为最终回收所得铼的质量(g)。

2 结果与讨论

2.1 钨铼合金废料的氧化过程分析

在空气中对钨铼合金废料进行氧化,废料中的铼 和钨分别转化为 Re₂O₇ 和 WO₃。图 3 为 3 种不同形 式钨铼合金废料在空气中的 TG-DSC 曲线。从图中 看出,粉末状、块状以及丝状废料分别在 450、525 和 650 ℃时达到失重最大值,由于 Re₂O₇ 的高挥发 性,表明在此温度之前,废料的氧化过程以铼的氧化

表 1 不同形式钨铼合金废料的化学成分

Table 1	Chemical composition of the different forms of W-Re alloyed scraps $(\omega/\%)$	
		1

Element	W	Re	Fe	Мо	Al	Sb	Ni	Balance
Powder form	94.542	5.103	0.064	0.007	0.076	0.014	0.017	< 0.001
Block form	94.873	5.008	0.015	0.009	0.056	0.013	0.024	< 0.001
Wire form	94.921	5.012	0.021	0.004	0.026	0.022	0.019	< 0.001

图 1 不同形式钨铼合金废料预处理前后的形态照片

Fig.1 Morphologies of the different forms of W-Re alloyed scraps before (a-c) and after (d-f) pretreatment: (a, d) powder, (b, e) block, and (c, f) wire

失重为主,此温度之后,以钨的氧化增重占据主导。 由于 WO₃的生成,分别在 507、750 和 884 ℃时铼 的氧化失重现象明显减弱,开始表现为增重。在钨铼 合金废料的氧化过程中,存在 Re₂O₇挥发吸热和钨氧 化放热^[23]。从 DSC 曲线看出,粉末状、块状以及丝 状废料分别在 648、660 和 863 ℃时出现放热特征 峰,且此时废料增重速率最大,说明钨的氧化反应剧 烈,放热达到最大值。当温度继续升高,随着反应过 程的进行,废料的量逐渐减少,钨的氧化放热现象逐 渐减弱。由于 WO₃在约 850 ℃时发生升华导致收集 的 Re₂O₇不纯,因此粉末状、块状以及丝状钨铼合金 废料分别选定 450~648、525~750 及 650~840 ℃为最 佳氧化温度。

图 4 为 3 种不同形式钨铼合金废料在不同氧化温 度下 Re_2O_7 的挥发率曲线。从图中看出, Re_2O_7 挥发 率均随温度的升高而增大,且在达到某一最大值后不 发生明显变化。且在上述最佳氧化温度区间,粉末 状、块状及丝状废料的 Re_2O_7 挥发率均不低于 95%,分别为 96.55%~100%,94.12%~98.43%及 92.14%~95.04%。结合 TG-DSC 曲线分析,在进行 废料的氧化时,为使反应速率最大,粉末状、块状及 丝状废料的最佳氧化温度分别选定为 648,750 及 840 \mathbb{C} ,并保持足够的氧化时间 6 h 使废料充分反 应, Re_2O_7 的挥发率分别可达 100%、98.43%及 95.04%。

2.2 NH₄ReO₄粉末的成分和微观组织分析

图 5 为 3 种不同形式钨铼合金废料回收所得 NH₄ReO₄ 粉末的 XRD 分析结果。由图可知,粉末的 谱图主峰位置均分别为 16.511°, 25.389°, 30.314°,

图 3 3 种不同形式钨铼合金废料在空气中的 TG-DSC 曲线

Fig.3 TG-DSC curves of the three different forms of W-Re alloyed scraps in air: (a) powder, (b) block, and (c) wire

图 4 不同氧化温度下 Re₂O₇的挥发率曲线 Fig.4 Volatilization rate curves of the Re₂O₇ at different oxidation temperatures

- 图 5 3 种不同形式钨铼合金废料回收所得 NH₄ReO₄ 粉末的 XRD 图谱
- Fig.5 XRD patterns of the NH₄ReO₄ powder recycled from the three different forms of W-Re alloyed scraps

对应了 NH₄ReO₄ 的(101),(112),(200) 晶面 (PDF 卡片: 85-0347),衍射峰峰形尖锐,没有杂 峰,证实了 NH₄ReO₄ 粉末良好的结晶性,该结果说 明 3 种废料通过该方法均可制备出纯净、结晶度高的 NH₄ReO₄粉末。

图 6 为 3 种不同形式钨铼合金废料回收所得 NH₄ReO₄ 粉末的 SEM 形貌及对应的 EDS 分析结 果。从图 6a~6c 看出, NH₄ReO₄ 粉末均呈现出较规 则的块状多面体形貌, 颗粒尺寸分布较窄。图 6d~6f 的 EDS 分析结果显示, 3 种粉末均主要由 N、O、Re 3 种元素组成,其原子比也符合 NH₄ ReO₄ 的比例。表 2 为采用 ICP-OES 测定的 NH₄ ReO₄ 粉末的化学成分组成。从表中看出,粉末状、 块状以及丝状钨铼合金废料通过此法回收制备的 NH₄ReO₄ 粉末纯度均大于 99.99%,分别为 99.990%、 99.987%和 99.983%,杂质的含量较低,主要杂质 为W、Fe 和 Mo。

2.3 铼的成分和微观组织分析

图 7 为 NH₄ReO₄粉末在 550 ℃还原制得的铼粉 的 XRD 分析结果。从图中看出, NH₄ReO₄粉末均被 还 原 成 了 铼 粉 , 图 谱 主 峰 位 置 均 为 37.587°, 40.437°, 42.886°, 这是典型的铼的特征峰, 对应铼 的 (10 ī 0), (0002), (10 ī 1) 晶面 (PDF 卡片: 89-2935), 衍射峰峰形尖锐,没有杂峰,证实了铼粉的 良好结晶性。

图 8 为 NH₄ReO₄ 粉末在 550 ℃还原制得的铼粉的 SEM 形貌、EDS 分析结果及粒度分布曲线。从图 8a~8c 可以看出,回收所得铼粉均呈现出珊瑚状,粉末 颗粒存在明显的团聚现象且疏松多孔。图 8d~8f 的 EDS 分析结果显示,粉末均只有 Re 元素组成,无其他杂质

图 6 3 种不同形式钨铼合金废料回收所得 NH4ReO4 粉末的 SEM 形貌及对应的 EDS 能谱分析结果

Fig.6 SEM morphologies (a-c) and corresponding EDS results (d-f) of the NH₄ReO₄ powder recycled from the three different forms of W-Re alloyed scraps: (a, d) powder, (b, e) block, and (c, f) wire

表 2 3 种不同形式钨铼合金废料回收所得 NH4ReO4 粉末的化学成分

Table 2	Chemical composition of the NH ₄ ReC	4 powder recycled from the	three different forms of	W-Re alloyed scraps (ω /%)
---------	---	----------------------------	--------------------------	------------------------------------

Element	Re	W	Fe	Mo	Al	Sb	Ni	Cu	Cr	Balance
$NH_4ReO_4(a)$	69.715	0.003	0.002	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
$NH_4ReO_4(b)$	69.388	0.005	0.003	0.004	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
$NH_4ReO_4(c)$	69.347	0.007	0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Note: (a)-powder; (b)-block; (c)-wire

图 7 NH4ReO4 粉末在 550 ℃还原制得的铼粉的 XRD 图谱 Fig.7 XRD patterns of the rhenium powder prepared by NH4ReO4 after reduction at 550 ℃

元素存在。由于铼粉的团聚现象,从显微形貌上很难计算出颗粒的尺寸,因此对其进行粒度分布分析,结 果如图 8g~8i所示,粉末状、块状和丝状废料回收 所得铼粉的平均粒径分别约为 15.09、16.02 及 20.16 μm。

表 3 为采用 ICP-OES 测定的铼粉的化学成分组 成。从表中看出,粉末状、块状和丝状钨铼合金废 料通过此方法回收所得铼粉的纯度均大于 99.9%, 分别为 99.952%、99.939%和 99.915%,杂质的含 量较低,主要杂质为 W、Fe 和 Mo。粉末状废料回 收制备的铼粉的纯度最高,块状废料次之,丝状废 料最低,这与上述制备的 NH₄ReO₄ 粉末的纯度结果 一致。

图 8 NH₄ReO₄粉末在 550 ℃还原制得的铼粉的 SEM 形貌、对应的 EDS 能谱及粒度分布

Fig.8 SEM morphologies (a-c), corresponding EDS results (d-f) and particle size distribution (g-i) of the rhenium powder prepared by NH₄ReO₄ after reduction at 550 °C: (a, d, g) powder, (b, e, h) block, and (c, f, i) wire

表 3	NH₄ReO₄粉末在 550	℃还原制得的铼粉的化学成分
	· · · · · · · · · · · · · · · · · · ·	

Table 3 Chemical c	composition of the rhenium	powder prepared b	y NH ₄ ReO ₄ after reduction at 550	°C (<i>w</i> /%)
--------------------	----------------------------	-------------------	---	-------------------

Element	Re	W	Fe	Мо	Al	Sb	Ni	Cu	Cr	Balance
Rhenium (a)	99.952	0.015	0.013	0.009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Rhenium (b)	99.939	0.013	0.040	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Rhenium (c)	99.915	0.029	0.047	0.008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Note: (a)-powder; (b)-block; (c)-wire

2.4 铼的回收率

图 9 为在不同氧化温度下铼的实际回收率及相对 回收率的变化曲线。从图 9a 看出,铼的实际回收率 均随温度的升高而增大,且达到某一最大值后不发生 明显变化。粉末状、块状和丝状钨铼合金废料对应的 铼的回收率最大分别为 95.62%, 94.57%及 91.59%,且其相对回收率均达 96%以上(图 9b)。 同时在3种废料的最佳氧化温度区间,铼的实际回收 率与相对回收率非常接近,进一步说明了该工艺的可 行性。

图 9 铼的实际回收率和相对回收率的变化曲线

Fig.9 Variation curves of actual (a) and relative (b) recovery rates of the rhenium powder

3 结 论

 采用火法从粉末状、块状以及丝状 3 种不同 形式的钨铼合金废料中回收得到铼粉,发现钨铼合金 废料的形式对铼的回收工艺条件及回收率具有明显的 影响。

2)从未合金化的粉末状及合金化后的块状和丝状废料回收铼,所需的氧化温度不同,且在不同的氧化温度下 Re₂O₇ 有不同的挥发率。分别在 648,750 及 840 ℃氧化 6 h 以及 550 ℃还原 90 min 的回收工 艺下,3 种废料的 Re₂O₇ 挥发率分别可达 100%、98.43% 及 95.04%, 铼的回收率分别为 95.62%,94.57% 及 91.59%。

3)3种不同形式钨铼合金废料所回收的铼粉结晶性好,颗粒尺寸细小,纯度均高于99.9%,分别可达99.952%、99.939%及99.915%。

参考文献 References

- Kesiemea U, Chrysanthoua A, Catullib M. International Journal of Refractory Metals and Hard Materials[J], 2019, 82: 150
- [2] Cheng Tingyu(程挺宇), Xiong Ning(熊 宁), Peng

Kaiyuan(彭楷元) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2009, 38(2): 373

- [3] Zhou Lejun, Bai Meng, Liu Zhihong et al. Rare Metal Materials and Engineering[J], 2011, 40(10): 1699
- [4] Wang Yongbin(王永斌), Huang Jianfen(黄建芬), Li Wei(栗威) et al. Acta Petrologica et Mineralogica(岩石矿物学杂质)[J], 2015, 34(1): 110
- [5] Yin Xieshi(印协世). Tungsten-Rhenium Alloy and Tungsten-Rhenium Thermocouple(钨铼合金和钨铼热电 偶)[M]. Beijing: Metallurgical Industry Press, 1992: 7
- [6] Ai Cheng, Liu Gang, Liu Lin et al. Rare Metal Materials and Engineering[J], 2012, 41(8): 1336
- [7] Shen Leiting, Tesfaye F, Li Xiaobin et al. Minerals Engineering[J], 2021, 161: 106 719
- [8] Zhou Quanfa(周全法), Shang Tongming(尚通明). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2005, 34(1): 7
- [9] Zhang Wenlu(张文禄). China Tungsten Industry(中国钨业)[J], 1997, 6: 21
- [10] Ye Longgang, Ouyang Zhen, Chen Yongming et al. International Journal of Refractory Metals and Hard Materials[J], 2019, 87: 105 148
- [11] Heshmatpour B, Mcdonald R E. Journal of the Less Common Metals[J], 1982, 86: 121
- [12] Levin A M, Levchuk O M. Russian Metallurgy (Metally)[J], 2017, 2017: 47
- [13] Chen Kunkun(陈昆昆), Cao Qigao(操齐高), Meng Hanqi(孟晗琪) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(1): 279
- [14] Kim M S, Lee J C, Park H S et al. Hydrometallurgy[J], 2018, 176: 235
- [15] Hori H, Otsu T, Yasukawa T et al. Hydrometallurgy[J], 2018, 183: 151
- [16] Nebeker N, Hiskey J B. Hydrometallurgy[J], 2012, 125-126: 64
- [17] Cheema H A, Ilyas S, Masud S et al. Separation and Purification Technology[J], 2018, 191: 116
- [18] Brandaleze E, Bazán V, Orozco I et al. Journal of Thermal Analysis and Calorimetry[J], 2018, 133: 435
- [19] Lessard J D, Gribbin D G, Shekhter L N. International Journal of Refractory Metals and Hard Materials[J], 2014, 44(3): 1
- [20] Li Yongjia(李永佳), Lei Ting(雷霆), Zou Yanmei(邹艳梅)
 et al. Metallurgy of Scattered Metals(稀散金属冶金)[M].
 Beijing: Metallurgical Industry Press, 2018: 524

- [21] Alan D D, Reilly K T, Landmesser J E et al. America Patent, US4604265A[P], 1986
- [22] Gaur R P S, Wolfe T A, Braymiller S A. International Journal of Refractory Metals and Hard Materials[J], 2015,

[23] Fan Xiaohui, Deng Qiong, Gan Min et al. Transactions of Nonferrous Metals Society of China[J], 2019, 29(4): 840

Investigation of Recycling Rhenium from Different Forms of W-Re Alloyed Scraps

Xu Dang^{1,2}, Cheng Jigui^{1,2}, Chen Pengqi^{1,2}, Zhang Jiuxing^{1,2}, Cao Qigao³, Chen Kunkun³, Zhao Panchao³

(1. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China)

(2. Powder Metallurgy Engineering and Technology Research Center of Anhui Province, Hefei 230009, China)

(3. Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China)

Abstract: Rhenium is a rare refractory metal with unique characteristics and has been widely used. In the case of insufficient rhenium resources, recycling rhenium from rhenium-bearing scraps is considered to be one of the important ways to obtain rhenium. In this work, W-Re alloyed scraps in the form of powder, block and wire were selected to recycle rhenium by a pyrometallurgical method, and the properties of the recycled intermediate NH₄ReO₄ obtained by oxidation roasting, ammonia leaching, evaporative crystallization and the rhenium powder obtained by hydrogen reduction under different process parameters were analyzed. The results show that the form of W-Re alloyed scraps has a significant effect on the recycling process and recovery rate of rhenium powder. The W-Re alloyed scraps in unalloyed powder form, alloyed block and alloyed wire form have different oxidation temperatures, and the volatilization rates of Re_2O_7 are different at different temperatures. The purity of rhenium powder recycled from three different forms of W-Re alloyed scraps in powder, block and wire are 99.952%, 99.939% and 99.915%, respectively, and the recovery rates of rhenium are 95.62%, 94.57% and 91.59%, respectively.

Key words: W-Re alloyed scraps; rhenium; recycling; pyrometallurgy; forms of scraps

Corresponding author: Cheng Jigui, Ph. D., Professor, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China, Tel: 0086-551-62901793, E-mail: jgcheng@hfut.edu.cn

^{50: 79}