Abstract:In this paper, Ti-6Al-4V alloy wire was molten by electric arc and then deposited layer by layer for the rapid prototyping of additive manufacture. Morphology, micro-hardness and mechanical properties of Ti-6Al-4V alloy were analyzed. The results indicate that the deposit in the first and the second layers is in the form of columnar crystals and the rest are equiaxial crystals. Meanwhile, a fair amount of heat from arc ensures a good metallurgical bonding in all of zones (deposition zone, fusion zone and deposition zone), and eliminates both clear deposition-layer and martensite of alloy. The integral alloy gets the stable α+β lamellar structural and similar micro-hardness of all zones. Compared with as-cast Ti-6Al-4V alloy, titanium alloy in this work obtains finer initial β-Ti grain and shorter α+β lamellar spacing by Wire+Arc Additive Manufactured. The ultimate strength and elongation of Ti-6Al-4V alloy have increased by 3.6% and 37%, respectively. Besides the tensile fracture morphology of Wire+Arc Additive Manufactured alloy is ductile dimple clearly different from that of as-cast alloy tearing edged quasi-cleavage.