+Advanced Search
A systematical investigation on the ZrB2-based ultra-high temperature ceramics fabricated by SPS using nanosized ZrB2 powders
Affiliation:

1.Anhui Polytechnic University;2.Quzhou University

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    The spark plasma sintering behaviors of ZrB2-based ultra-high temperature ceramics were systematically investigated using nanosized ZrB2 powders. Rapid densification occurred at low temperature (1550 oC) for monolithic ZrB2 due to the nanosized powders. ZrB2-SiC ceramic achieved full densification at 1800 oC by SPS resulting in a high flexural strength of 1078±162 MPa. ZrB2-SiC-Cf composite was successfully prepared by SPS at 1700 oC. The composite showed obvious fiber pull-out on the fracture surface, leading to a high fracture toughness (6.04 MPa·m1/2) and a non-brittle fracture mode. Meanwhile, a high critical thermal shock temperature difference of 627 oC was obtained for ZrB2-SiC-Cf implying an excellent thermal shock resistance of such material.

    Reference
    [1] A. Nisar, S. Ariharan, K. Balani, Establishing microstructure-mechanical property correlation in ZrB2-based ultra-high temperature ceramic composites, Ceram. Int. 43 (2017) 13483-13492.
    [2] S.Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: a review, J. Eur. Ceram. Soc. 29 (2009) 995-1011.
    [3] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc. 90 (2007) 1347-1364.
    [4] E.P. Simonenko, D.V. Sevast’Yanov, N.P. Simonenko,SV.G.SSevast’yanov, N.T.SKuznetsov, Promising ultra-high-temperature ceramic materials for aerospace applications, Russ. J. Inorg. Chem. 58 (2013) 1669-1693.
    [5] W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Ultra-high temperature ceramics: materials for extreme environment applications, Scripta. Mater. 16 (2016) 112-143.
    [6] A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, D.T. Ellerby, High strength zirconium diboride based ceramics, J. Am. Ceram. Soc. 87 (2010) 1170-1172.
    [7] F. Monteverde, S. Guicciardi, A. Bellosi, Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Mater. Sci. Eng. A 346 (2003) 310-319.
    [8] K.X. Gui, F.Y. Liu, G. Wang, Z.J. Huang, P. Hu, Microstructural evolution and performance of carbon fiber-toughened ZrB2 ceramics with SiC or ZrSi2 additive, J. Adv. Ceram. 7 (2018) 343-351.
    [9] J.J. Sha, J. Li, Z.Z. Lv, S.H. Wang, Z.F. Zhang, Y.F. Zu, S. Flauder, W. Krenkel, ZrB2-based composites toughened by as-received and heat-treated short carbon fibers, J. Eur. Ceram. Soc. 37 (2017) 549-558.
    [10] S.Q. Guo, K. Naito, Y. Kagawa, Thermal and electrical properties of hot-pressed short pitch-based carbon fiber-reinforced ZrB2-SiC matrix composites, Ceram. Int. 39 (2013) 5733-5740.
    [11] L. Silvestroni, D. Dalle Fabbriche, C. Melandri, D. Sciti, Relationships between carbon fiber type and interfacial domain in ZrB2-based ceramics, J. Eur. Ceram. Soc. 36 (2016) 17-24.
    [12] K.S. Xiao, Q.G. Guo, Z.J. Liu, S. Zhao, Y. Zhao, Influence of fiber coating thickness on microstructure and mechanical properties of carbon fiber-reinforced zirconium diboride based composites, Ceram. Int. 40 (2014) 1539-1544.
    [13] S. Zhu, W.G. Fahrenholtz, G.E. Hilmas, Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics, J. Am. Ceram. Soc. 27 (2007) 2077-2083.
    [14] F.Y. Yang, X.H. Zhang, J.C. Han, S.Y. Du, Characterization of hot-pressed short carbon fiber reinforced ZrB2–SiC ultra-high temperature ceramic composites, J. Alloys Compd. 472 (2009) 395-399.
    [15] F.Y. Yang, X.H. Zhang, J.C. Han, S.Y. Du, Mechanical properties of short carbon fiber reinforced ZrB2-SiC ceramic matrix composites, Mater. Lett. 62 (2008) 2925-2927.
    [16] K.X. Gui, P. Hu, W.H. Hong, X.H. Zhang, S. Dong, Microstructure, mechanical properties and thermal shock resistance of ZrB2-SiC-Csf composite with inhibited degradation of carbon fibers, J. Alloys Compd. 706 (2017) 16-23.
    [17] Q. Liu, W.B. Han, P. Hu, Microstructure and mechanical properties of ZrB2-SiC nanocomposite ceramic, Scripta. Mater. 61 (2009) 690-692.
    [18] Y.J. Yan, Z.R. Huang, S.M. Dong, D.L. Jiang, Pressureless sintering of high-density ZrB2-SiC ceramic composites, J. Am. Ceram. Soc. 89 (2010) 3589-3592.
    [19] P. Sarin, P.E. Driemeyer, R.P. Haggerty, D.K. Kim, In situ studies of oxidation of ZrB2 and ZrB2-SiC composites at high temperatures, J. Eur. Ceram. Soc. 30 (2010) 2375-2386.
    [20] M. Thompson, W.G. Fahrenholtz, G. Hilmas, Effect of starting particle size and oxygen content on densification of ZrB2, J. Am. Ceram. Soc. 94 (2010) 429-435.
    [21] V. Zamora, A.L. Ortiz, F. Guiberteau, M. Nygren, Spark-plasma sintering of ZrB2 ultra-high-temperature ceramics at lower temperature via nanoscale crystal refinement, J. Eur. Ceram. Soc. 32 (2012) 2529-2536.
    [22] Z.Z. Fang, H. Wang, Densification and grain growth during sintering of nanosized particles, Int. Mater. Rev. 53 (2008) 326-352.
    [23] S.Q. Guo, T. Nishimura, Y. Kagawa, J.M. Yang, Spark plasma sintering of zirconium diborides, J. Am. Ceram. Soc. 91 (2008) 2848-2855.
    [24] T. Venkateswaran, B. Basu, G.B. Raju, D.Y. Kim, Densification and properties of transition metal borides-based cermets via spark plasma sintering, J. Eur. Ceram. Soc. 26 (2006) 2431-2440.
    [25] J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, Thermal shock resistance of ZrB2 and ZrB2-30% SiC, Mater. Chem. Phys. 112 (2008) 140-145.
    [26] D. Sciti, L. Silvestroni, M. Nygren, Spark plasma sintering of Zr-and Hf-borides with decreasing amounts of MoSi2 as sintering aid, J. Eur. Ceram. Soc. 28 (2008) 1287-1296.
    [27] J.E. Garay, Current-activated, pressure-assisted densification of materials, Annu. Rev. Mater. Res. 40 (2010) 445-468.
    [28] Y. Xiong, Z.Y. Fu, H. Wang, Microstructural effects on the transmittance of translucent AlN ceramics by SPS, Mater. Sci. Eng. B 128 (2006) 7-10.
    [29] X.H. Zhang, L. Xu, S.Y. Du, W.B. Han, J.C. Han, C.Y. Liu, Thermal shock behavior of SiC-whisker-reinforced diboride ultrahigh-temperature ceramics, Scripta. Mater. 59 (2008) 55-58.
    [30] P. Hu, K.X. Gui, W.H. Hong, X.H. Zhang, S. Dong, High-performance ZrB2-SiC-Csf composite prepared by low-temperature hot pressing using nanosized ZrB2 powder, J. Eur. Ceram. Soc. 37 (2017) 2317-2324.
    [31] J.J. Sha, J. Li, S.H. Wang, Y.C. Wang, Z.F. Zhang, J.X. Dai, Toughening effect of short carbon fibers in the ZrB2-ZrSi2 ceramic composites, Mater. Des. 75 (2015) 160-165.
    [32] W.H. Hong, K.X. Gui, P. Hu, X.H. Zhang, S. Dong, Preparation and characterization of high-performance ZrB2-SiC-Csf composites sintered at 1450 oC, J. Adv. Ceram. 6 (2017) 1-10.
    Related
    Cited by
Get Citation

[Kaixuan Gui, Qingda Zhang, Dongdong Zhu, Gang Wang. A systematical investigation on the ZrB2-based ultra-high temperature ceramics fabricated by SPS using nanosized ZrB2 powders[J]. Rare Metal Materials and Engineering,2020,49(7):2213~2219.]
DOI:10.12442/j. issn.1002-185X.20190995

Copy
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 26,2019
  • Revised:May 25,2020
  • Adopted:January 03,2020
  • Online: August 31,2020