+Advanced Search
Microstructure and Room Temperature Tensile Properties of Rolled Mo-14%Re Alloy
Author:
Affiliation:

1.School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;2.National and Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an 710055, China;3.Northwest Institute for Nonferrous Metal Research, Xi 'an 710016, China

Fund Project:

National Key R&D Program of China (2022YFB3705400); Major Scientific and Technological Projects in Shaanxi Province of China (2020ZDZX04-02-01); Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan of China (2022TD-30); the Fok Ying Tung Education Foundation (171101); Youth Innovation Team of Shaanxi Universities (2019-2022); Top Young Talents Project of“Special Support Program for High level Talents”in Shaanxi Province (2018-2023); China Postdoctoral Science Foundation (2021M693878); Service Local Special Program of Education Department of Shaanxi Province, China (21JC016); Key R&D Program of Shaanxi Province, China (2021GY-209)

  • Article
  • | |
  • Metrics
  • |
  • Reference [39]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Mo-Re alloys have excellent mechanical and processing properties due to their high-temperature resistance, corrosion resistance, and plasticity. To further understand the microstructure and room temperature tensile properties of rolled Mo-14%Re alloy, the microstructure and fracture morphology of the Mo-14%Re alloy were investigated by scanning electron microscopy (SEM) and high-resolution electron backscatter diffraction (EBSD). Channel 5 software was used to analyze the microstructure evolution of rolled Mo-14%Re alloy at different annealing temperatures. With the increase in annealing temperature, the Schmidt factor of the Mo matrix phase and ReO3 phase decreases gradually. The texture intensity increases rapidly, and the crystal orientation intensity of the polarography increases from 6.51 to 10.18. The initial recrystallization of the rolled Mo-14%Re alloy occurs at 1100 °C, at which the uniform precipitation of the earth-rich ReO3 phase in the alloy leads to uniform stress distribution during tensile process, the grains of Mo matrix phase and ReO3 phase show obvious <101> crystal orientation and <111> crystal orientation, and the grain boundaries of ReO3 phase are mainly high-angle grain boundaries, which makes the elongation after fracture reach the maximum of 33.5%. The tensile fracture has the highest number of dimples and the largest size. Besides, the formation, aggregation, growth, and crack propagation of micropores during fracture were studied.

    Reference
    [1] Feng B Q, Guo J L, Wang W et al. China Molybdenum Indu- stry[J], 2013: 12
    [2] Hu P, Zhou Y H, Deng J et al. J Alloys Compd[J], 2018, 745: 532
    [3] Hu Ping, Song Rui, Wang Kuaishe et al. Rare Metal Materials and Engineering[J], 2017, 46(5): 1225
    [4] Xiang S, Yao Y, Wan Y et al. Nutrients[J], 2016, 12(8): 826
    [5] US Geological Survey. Mineral Commodity Summaries 2011[M]. US: Gedogical Survey, 2011
    [6] Amelunxen P, Wilmot J C, Easton C et al. US Patent[P], US20070780850, 2007
    [7] Que Z, Wei Z, Li X et al. Journal of Materials & Technology[J], 2022, 31(10): 203
    [8] Leichtfried G, Schneibel J H, Heilmaier M et al. Metallurgical and Materials Transactions A[J], 2006, 37(10): 2955
    [9] Davidson D L. Journal of Applied Physics[J], 1968, 39(12): 5768
    [10] Hu Ping, Wang Kuaishe, Yang Fan et al. Rare Metal Materials and Engineering[J], 2014, 43(7): 1722 (in Chinese)
    [11] Kang Xuanqi, Wang Kuaishe, Hu Ping et al. Rare Metal Materials and Engineering[J], 2015, 44(5): 1254 (in Chinese)
    [12] He Huancheng, Wang Kuaishe, Hu Ping et al. Rare Metal Materials and Engineering[J], 2014, 43(4): 964 (in Chinese)
    [13] Hu P, Hu B L, Wang K S et al. Materials Science and Engineering A[J], 2016, 678: 315
    [14] Leonard K J, Busby J T, Zinkle S J et al. Journal of Nuclear Materials[J], 2007, (3): 336
    [15] Leonhardt T, CarleN J C, Buck M et al. Conference Proceed- ings[M]. US: American Institute of Physics, 1999: 685
    [16] Agnew S R, Leonhardt T. JOM[J], 2003, 55(10): 25
    [17] Zhu G, Fang Z, Chen J et al. Hydrometallurgy[J], 1994, 94: 541
    [18] Golmakani M H, Khaki J V, Babakhani A et al. Materials Chemistry and Physics[J], 2017, 194: 9
    [19] Liu S. International Journal of Refractory Metals & Hard Materials[J], 1997, 15(4): 219
    [20] Sha L. International Journal of Refractory Metals & Hard Materials[J], 1999, 17(5): 381.
    [21] Han F T, Wang Z C, Jing C N et al. Applied Mechanics & Mate-rials[J], 2013, 331: 551
    [22] Zhang J L, Li Zhong Kui, Fu Jie et al. China Molybdenum Indus-try[J], 2010, 34(5): 32
    [23] Wadsworth J, Nieh T G, Stephens J J et al. Scripta Metallurgica[J], 1986, 20(5): 637
    [24] Mannheim R L, Garin J L. Journal of Materials Processing Tech-nology[J], 2003, 48(9): 1666
    [25] Garin J L, Mannheim R L. Key Engineering Materials[J], 2001, 189?191: 394
    [26] Busby J T, Leonard K J, Zinkle S J et al. Journal of Nuclear Ma-terials[J], 2007, 366(3): 388
    [27] Haydock R. Journal of Physics C Solid State Physics[J], 1981, 14(26): 3807
    [28] Beck P A. Interscience Publishers[J], 1963, 112(6): 135
    [29] Liu Z, Li P, Xiong L et al. Materials Science and Engineering A[J], 2016, 680: 259
    [30] Galiyev A, Kaibyshev R, Gottstein G et al. Acta Materialia[J], 2001, 49(7): 1199
    [31] Zhong Q P. Crack Studies[M]. Beijing: Higher Education Press, 2014 (in Chinese)
    [32] Le A N, Zhang Y P, Gen Ye et al. Hot Working Technology[J]. 2011, 18(10): 23
    [33] Chen Y, Li J, Tang B et al. Journal of Alloys and Compounds[J], 2015, 618(5): 146
    [34] Yuan W J, Zhou F, Zhang Z L et al. Materials Science & Engi-neering A[J], 2013, 561: 183
    [35] Bridgman P W. The Stress Distribution at the Neck of a Tension Specimen[M], New York: Harvard University Press, 1964
    [36] Paris P, Erdogan F. Journal of Basic Engineering[J], 1963, 85(4): 528
    [37] Newman J. A Fatigue Crack Growth Structural Anaysis Pro-gram[R]. US: NASA, 1992
    [38] Kim J H, Lee S B. Engineering Fracture Mechanics[J], 2000, 66: 1
    [39] Tanaka K, Nakai Y, Yamashita M et al. International Journal of Fracture[J], 1981, 17(5): 519
    Cited by
Get Citation

[He Chaojun, Hu Ping, Xing Hairui, Yang Fan, Zhang Xiangyang, Lin Xiaohui, Hua Xingjiang, Bai Run, Zhang Wen, Wang Kuaishe. Microstructure and Room Temperature Tensile Properties of Rolled Mo-14%Re Alloy[J]. Rare Metal Materials and Engineering,2023,52(8):2746~2756.]
DOI:10.12442/j. issn.1002-185X.20230059

Copy
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 08,2023
  • Revised:March 19,2023
  • Adopted:March 20,2023
  • Online: August 25,2023
  • Published: August 24,2023