氧含量对铸造TC4钛合金力学性能和腐蚀性能影响
DOI:
作者:
作者单位:

1.中国机械总院集团沈阳铸造研究所有限公司 高端装备铸造技术全国重点实验室;2.中国机械总院集团沈阳铸造研究所

作者简介:

通讯作者:

中图分类号:

TG146. 2

基金项目:


The roles of Oxygen Content on the Mechanical properties and Corrosion Resistance of Casting TC4 alloys
Author:
Affiliation:

1.China Academy of Machinery Shenyang Research Institute of Foundry Co., Ltd., State Key Laboratory of Light Alloy Casting Technology for High-End Equipment;2.China Academy of Machinery Shenyang Research Institute of Foundry Co., Ltd.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究通过在熔炼过程中添加TiO2粉末,制备了0.10O、0.15O、0.25O、0.35O的TC4-xO合金。使用SEM、EDS和XRD分析了TC4-xO合金的显微组织和相构成,使用显微硬度设备和电子万能试验机测试了合金的力学性能,并在模拟海水和模拟污染海水溶液中进行了电化学腐蚀性能测试。结果如下:四种氧含量的TC4-xO合金显微组织均为网状α+β双相组织。XRD图谱显示,合金中无TiO2或TiO的相关峰;氧原子占据α-Ti的八面体间隙位置,引起TC4-xO合金发生晶格畸变,使与c轴相关的α-Ti峰向低角度方向偏移。并随着合金中氧含量升高,合金的硬度、强度呈线性上升,但塑性显著下降。在模拟海水溶液中,TC4-xO合金的年腐蚀速率、阻抗值几乎无变化;但0.35O合金在+1.32 V处发生了快速的阳极溶解,过高的氧含量会加大合金的腐蚀倾向。在模拟污染海水溶液中,随着氧含量的增加TC4-xO合金的年腐蚀速率、阻抗值均表现为先减小、后增大,其中0.25O合金的年腐蚀速率最小仅为2.17 μm/a;四种氧含量TC4-xO合金均在+0.79 V处出现了点蚀击穿电位,并在点蚀坑内检测到S元素。在腐蚀过程中,S2-Cl-离子的协同作用下破坏了TC4-xO合金表面致密氧化膜的稳定性,发生微电池腐蚀,与裸露的钛基材反应生成的腐蚀产物造成了点蚀的发生。本研究结果可为海洋工程用大尺寸钛合金铸件的开发提供性能优化方向。

    Abstract:

    In this study, TC4-xO alloys of 0.10O, 0.15O, 0.25O and 0.35O were prepared by the addition of TiO2 powder during the melting process. The microstructure and phase composition of the TC4-xO alloys were analyzed using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and X-ray Diffraction. The mechanical properties of the alloys were tested with micro-hardness equipment and electronic universal testing machines. Additionally, the corrosion performance of the alloys was evaluated in simulated seawater and polluted seawater solutions. The results are as follows: All four TC4-xO alloys exhibited a mesh α+β dual-phase microstructure. X-ray diffraction patterns indicate that there are no peaks corresponding to TiO2 or TiO in the alloy. The oxygen atoms occupy the octahedral interstitial positions of α-Ti, resulting in lattice distortions within the TC4-xO alloy and causing a shift of the α-Ti peaks associated with the c-axis in the low-angle direction. As the oxygen content in the alloy increased, both hardness and strength rose linearly, while plasticity decreased significantly. In the simulated seawater solution, the annual corrosion rate and impedance values of the TC4-xO alloys showed minimal change. In the simulated polluted seawater solution, as the oxygen content increases, the annual corrosion rate and impedance values of the TC4-xO alloy initially decrease and then increase. Notably, the annual corrosion rate of the 0.25O alloy is the lowest, measuring only 2.17 μm/a. All four TC4-xO alloys exhibited breakdown potentials of +0.79 V, and sulfur was detected in the erosion pits. During the corrosion process, S2- and Cl- ions collaborated to disrupt the stability of the TC4-xO alloy surface, which was compromised by a dense oxidation film. This led to micro-battery corrosion, and the corrosion products generated from the reaction of exposed titanium-based materials contributed to further erosion. The findings of this study can guide the optimization of performance for the development of large-sized titanium alloy castings.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-03
  • 最后修改日期:2025-03-03
  • 录用日期:2025-04-16
  • 在线发布日期:
  • 出版日期: